Effective antigen cross-presentation by prostate cancer patients' dendritic cells: implications for prostate cancer immunotherapy.

Prostate Cancer Prostatic Dis

Howard Hughes Medical Institute, and Laboratory of Molecular Neuro-Oncology, The Rockefeller University, New York, NY 10021, USA.

Published: October 2004

Despite the potency with which dendritic cells (DCs) are able to utilize the exogenous MHC I antigen cross-presentation pathway to cross-present antigen for the activation of killer T cells in model systems, concern about defects in immune function in cancer patients has led to uncertainty regarding whether immune cells derived from patients can effectively be used to generate tumor vaccines. We have undertaken a careful analysis of the potency of using DCs obtained from prostate cancer patients to cross-present antigen derived from human prostate tumor cells for the activation of antigen-specific T cells. Such DCs can be matured ex vivo into functionally active cells and are capable of cross-presenting influenza antigen derived from internalized apoptotic prostate tumor cells. Importantly, we demonstrate effective stimulation of both CD4+ and CD8+ T cells, as evident by production of IFN-gamma, and the ability of CD8+ T cells to differentiate into effector CTLs. These results, defining conditions in which prostate cancer patient DCs can efficiently utilize the cross-presentation pathway and in which apoptotic tumor can serve as a source of antigen for DCs to activate T cells, demonstrate that this system warrants clinical study as a potential immunotherapy.

Download full-text PDF

Source
http://dx.doi.org/10.1038/sj.pcan.4500694DOI Listing

Publication Analysis

Top Keywords

prostate cancer
16
cells
11
antigen cross-presentation
8
dendritic cells
8
cells dcs
8
cross-presentation pathway
8
cross-present antigen
8
cancer patients
8
antigen derived
8
prostate tumor
8

Similar Publications

Background: Metastatic castration resistance prostate cancer (mCRPC) is a challenging disease with a significant burden of mortality and morbidity. Most of the patients attain resistance to the available treatments, necessitating further novel therapies in this clinical setting. Actinium 225 (Ac) prostate-specific membrane antigen (PSMA) radioligand therapy has emerged as a promising option and has been utilized for the last decade.

View Article and Find Full Text PDF

Background: In recent years, many studies have illustrated that the neutrophil-to-lymphocyte ratio (NLR) is a prognostic factor of metastatic castration-resistant prostate cancer (mCRPC), but their conclusions are controversial. The aim of this study was to assess the prognostic value of the NLR in patients with mCRPC treated with docetaxel-based chemotherapy.

Methods: Database searches were conducted in PubMed, EMBASE and the Cochrane Library to retrieve relevant published English-language literature up to 20 February 2023.

View Article and Find Full Text PDF

Purpose: To develop and validate a prostate-specific membrane antigen (PSMA) PET/CT based multimodal deep learning model for predicting pathological lymph node invasion (LNI) in prostate cancer (PCa) patients identified as candidates for extended pelvic lymph node dissection (ePLND) by preoperative nomograms.

Methods: [Ga]Ga-PSMA-617 PET/CT scan of 116 eligible PCa patients (82 in the training cohort and 34 in the test cohort) who underwent radical prostatectomy with ePLND were analyzed in our study. The Med3D deep learning network was utilized to extract discriminative features from the entire prostate volume of interest on the PET/CT images.

View Article and Find Full Text PDF

Prostate cancer is a heterogeneous disease with a slow progression and a highly variable clinical outcome. The tumor suppressor genes PTEN and TP53 are frequently mutated in prostate cancer and are predictive of early metastatic dissemination and unfavorable patient outcomes. The progression of solid tumors to metastasis is often associated with increased cell plasticity, but the complex events underlying TP53-loss-induced disease aggressiveness remain incompletely understood.

View Article and Find Full Text PDF

Activation of the p38 mitogen-activated protein kinase (MAPK) pathways is vital in regulating cell growth, differentiation, apoptosis, and stress response, significantly affecting tumorigenesis and cancer progression. We developed a bioinformatic technique to construct an interactome network-based molecular pathways for genes of interest and quantify their activation levels using high-throughput gene expression data. This study is focused on the p38α, p38β, p38γ, and p38δ kinases, examining their activation levels (PALs) based on transcriptomic data and their associations with survival and drug responsiveness across various cancer types.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!