Aroyl-pyrrole-hydroxy-amides (APHAs) are a new class of synthetic HDAC inhibitors recently described by us. Through three different docking procedures we designed, synthesized, and tested two new isomers of APHA lead compound 3-(4-benzoyl-1-methyl-1H-pyrrol-2-yl)-N-hydroxy-2-propenamide (1), compounds 3 and 4, characterized by different insertions of benzoyl and propenoylhydroxamate groups onto the pyrrole ring. Biological activities of 3 and 4 were predicted by computational tools up to 617-fold more potent than that of 1 against HDAC1; thus, 3 and 4 were synthesized and tested against both mouse HDAC1 and maize HD2 enzymes. Predictions of biological affinities (K(i) values) of 3 and 4, performed by a VALIDATE model (applied on either SAD or automatic DOCK or Autodock results) and by the Autodock internal scoring function, were in good agreement with experimental activities. Ligand/receptor positive interactions made by 3 and 4 into the catalytic pocket, in addition to those showed by 1, could at least in part account for their higher HDAC1 inhibitory activities. In particular, in mouse HDAC1 inhibitory assay 3 and 4 were 19- and 6-times more potent than 1, respectively, and 3 and 4 antimaize HD2 activities were 16- and 76-times higher than that of 1, 4 being as potent as SAHA in this assay. Compound 4, tested as antiproliferative and cytodifferentiating agent on MEL cells, showed dose-dependent growth inhibition and hemoglobin accumulation effects.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jm031036fDOI Listing

Publication Analysis

Top Keywords

class synthetic
8
synthesized tested
8
mouse hdac1
8
hdac1 inhibitory
8
3-4-aroyl-1-methyl-1h-pyrrol-2-yl-n-hydroxy-2-propenamides class
4
synthetic histone
4
histone deacetylase
4
deacetylase inhibitors
4
inhibitors discovery
4
discovery novel
4

Similar Publications

Organic radical reactions are crucial in many areas of chemistry, including synthetic, biological, and atmospheric chemistry. We develop a predictive framework based on the interaction of molecular orbitals that operates on mechanistic-level radical reactions. Given our chemistry-aware model, all predictions are provided with different levels of interpretability.

View Article and Find Full Text PDF

[Allelopathy: chemical communication between plants].

Biol Aujourdhui

January 2025

Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000 Versailles, France.

Today, weed control in agricultural systems is largely based on the use of synthetic pesticides. However, the use of these compounds is increasingly controversial among farmers and consumers, who point to their harmful properties for human health and the environment. In this context, the development of eco-friendly agricultural approaches and practices is becoming essential, and allelopathy represents a promising solution.

View Article and Find Full Text PDF

The fungal natural product class of the sorbicillinoids: structures, bioactivities, biosynthesis, and synthesis.

Nat Prod Rep

January 2025

Department of Natural Product Biotechnology, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Department of Pharmacy at Saarland University, PharmaScienceHub (PSH), 66123 Saarbrücken, Germany.

Covering 1948 up to October 2024Sorbicillinoids are a growing class of natural products (NPs) that stem from a variety of fungi including members of the orders and . This compound class is unique in its combination of structural complexity and pharmaceutically relevant biological activities. The majority of the sorbicillinoids, which are named after the common hexaketide precursor sorbicillin, exhibit anti-inflammatory, antimicrobial, cytotoxic, phytotoxic, and other selective enzyme inhibitory activities.

View Article and Find Full Text PDF

Fentanyl is a potent synthetic opioid widely used perioperatively and illicitly as a drug of abuse . It is well established that fentanyl acts as a μ-opioid receptor agonist, signaling through Gα intracellular pathways to inhibit electrical excitability, resulting in analgesia and respiratory depression . However, fentanyl uniquely also triggers muscle rigidity, including respiratory muscles, hindering the ability to execute central respiratory commands or to receive external resuscitation.

View Article and Find Full Text PDF

Mechanochemical Synthesis of Type III Porous Liquids from Solid Precursors for the Removal and Conversion of Waste CO from CH.

Adv Mater

January 2025

State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China.

Porous liquids (PLs) have emerged as a promising class of flow porous materials, offering distinctive benefits for sustainable separation processes coupled with catalytic transformations in the chemical industry. Despite their potential, challenges remain in the realms of synthesis complexity, stability, and the strategic engineering of separation and catalytic sites. In this study, a scalable mechanochemical synthetic approach is reported to fabricate Type III PLs from solid precursors with high stability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!