Partitioning of selected estrogenic compounds between synthetic membrane vesicles and water: effects of lipid components.

Environ Sci Technol

Department of Civil Engineering, The University of Texas at Austin, 1 University Station C1786, Austin, Texas 78712-0273, USA.

Published: February 2004

Partition coefficients of the steroid estrogens 17beta-estradiol, estriol, estrone, and 17alpha-ethynylestradiol and the industrial estrogenic compounds p-nonylphenol, p-(tert)octylphenol, bisphenol A, butylbenzylphthalate, and dibutylphthalate between liposome membrane vesicles and water (K(lipw) values) were determined using equilibrium dialysis. A moderate linear correlation with R2 values of as low as 0.679 were found for the relationship between log K(lipw) and log K(ow) for these compounds. Effects of lipid components used to prepare the membrane vesicles on the partitioning of 17beta-estradiol and p-nonylphenol were also evaluated. For both, K(lipw) values were larger for the vesicles prepared from phospholipids composed of shorter acyl chains such as dilauroyl-phosphatidylcholine than those composed of longer acyl chains such as distearoylphosphatidylcholine. Partition coefficients were higher for the vesicles prepared from phospholipids including unsaturated acyl chains such as dioleoyl-phosphatidylcholine than those solely composed of saturated acyl chains such as distearoyl-phosphatidylcholine. Both shorter acyl chains and double bonds resulted in a more fluid conformation of the lipid bilayer with the liquid crystalline phase rather than the gel phase and greater partitioning. In contrast, higher cholesterol contents reduced the partitioning coefficient. The presence of cholesterol in the void of the lipid bilayer possibly led to the stabilization of the bilayer and the decrease in the partitioning of 17beta-estradiol or p-nonylphenol molecules. These results suggest that phase transition is of critical importance in selecting lipid components to evaluate the bioconcentration for these compounds.

Download full-text PDF

Source
http://dx.doi.org/10.1021/es034311wDOI Listing

Publication Analysis

Top Keywords

acyl chains
20
membrane vesicles
12
lipid components
12
estrogenic compounds
8
vesicles water
8
effects lipid
8
partition coefficients
8
klipw values
8
partitioning 17beta-estradiol
8
17beta-estradiol p-nonylphenol
8

Similar Publications

ACSL1 Aggravates Thromboinflammation by LPC/LPA Metabolic Axis in Hyperlipidemia Associated Myocardial Ischemia-Reperfusion Injury.

Adv Sci (Weinh)

January 2025

Shanghai Key Laboratory of Vascular Lesions and Remodeling, Department of Vascular Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China.

Acute myocardial infarction (AMI) is associated with well-established metabolic risk factors, especially hyperlipidemia and obesity. Myocardial ischemia-reperfusion injury (mIRI) significantly offsets the therapeutic efficacy of revascularization. Previous studies indicated that disrupted lipid homeostasis can lead to lipid peroxidation damage and inflammation, yet the underlying mechanisms remain unclear.

View Article and Find Full Text PDF

Multiple myeloma (MM) is an incurable cancer of plasma cells with a 5-year survival rate of 59%. Dysregulation of fatty acid (FA) metabolism is associated with MM development and progression; however, the underlying mechanisms remain unclear. Herein, we explore the roles of long-chain fatty acid coenzyme A ligase (ACSL) family members in MM.

View Article and Find Full Text PDF

Intrahepatic cholestasis of pregnancy (ICP) is a pregnancy-specific liver disorder that typically leads to severe pregnancy outcomes. Although genetic, endocrine, and environmental factors are involved in the etiology of ICP, the role of metabolic disorders remains unclear. Here we report an examination of the biomolecular alterations in placental tissues of women with ICP and healthy pregnant women at a molecular level.

View Article and Find Full Text PDF

ROR1 CAR-T cells and ferroptosis inducers orchestrate tumor ferroptosis via PC-PUFA2.

Biomark Res

January 2025

Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.

Background: Lung cancer, particularly non-small cell lung cancer (NSCLC), has high recurrence rates and remains a leading cause of cancer-related death, despite recent advances in its treatment. Emerging therapies, such as chimeric antigen receptor (CAR)-T cell therapy, have shown promise but face significant challenges in targeting solid tumors. This study investigated the potential of combining receptor tyrosine kinase-like orphan receptor 1 (ROR1)-targeting CAR-T cells with ferroptosis inducers to promote ferroptosis of tumor cells and enhance anti-tumor efficacy.

View Article and Find Full Text PDF

Sphingolipid remodeling in the plasma membrane is essential for osmotic stress tolerance in Arabidopsis.

Plant Physiol

January 2025

State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P R China.

Osmotic stress caused by drought, salinity, or cold conditions is an important abiotic factor that decreases membrane integrity and causes cell death, thus decreasing plant growth and productivity. Remodeling cell membrane composition via lipid turnover can counter the loss of membrane integrity and cell death caused by osmotic stress. Sphingolipids are important components of eukaryotic membrane systems; however, how sphingolipids participate in plant responses to osmotic stress remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!