A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Squeezed exponential kinetics to describe a nonglassy downhill folding as observed in a lattice protein model. | LitMetric

Squeezed exponential kinetics to describe a nonglassy downhill folding as observed in a lattice protein model.

Proteins

Department of Life Sciences/Institute of Physics, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan.

Published: April 2004

We previously studied the so-called strange kinetics in the two-dimensional lattice HP model. To further study the strange kinetics, folding processes of a 27-mer cubic lattice protein model with Gō potential were investigated by simulating how the bundle of folding trajectories, consisting of a number of independent Monte Carlo simulations, evolves as the folding reaction proceeds, covering a wide range of temperature. Three realms of folding kinetics were observed depending on temperature. Although at temperatures where folding was two-state-like, the kinetics was conventional single exponential, we found that the time course data were well represented by a squeezed (or "shrunken") exponential function, exp [-(t/tau)beta] with beta > 1, at temperatures lower than the folding temperature, where folding was fastest and of a nonglassy downhill type. The squeezed exponential kinetics was found to pertain to the subdiffusion on the nonglassy downhill free energy surface and presents a marked contrast both to the single exponential kinetics and to the stretched exponential kinetics that was observed at lower temperatures where folding was also downhill but topological frustration came into effect. The observed temperature dependence of the folding kinetics suggests that some small single-domain proteins may follow the squeezed exponential kinetics at about the room temperature.

Download full-text PDF

Source
http://dx.doi.org/10.1002/prot.10583DOI Listing

Publication Analysis

Top Keywords

exponential kinetics
20
squeezed exponential
12
nonglassy downhill
12
kinetics
10
folding
10
lattice protein
8
protein model
8
strange kinetics
8
folding kinetics
8
kinetics observed
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!