Microstructures constructed from SU-8 polymer and produced on CaF(2) base plates have been developed for microchip-based analysis systems used to perform FTIR spectroscopic detection using mid-IR synchrotron radiation. The high brilliance of the synchrotron source enables measurements at spot sizes at the diffraction limit of mid-IR radiation. This corresponds to a spatial resolution of a few micrometers (5-20 microm). These small measurement spots are useful for lab-on-a-chip devices, since their sizes are comparable to those of the structures usually used in these devices. Two different types of microchips are introduced here. The first chip was designed for time-resolved FTIR investigations of chemical reactions in solution. The second chip was designed for chip-based electrophoresis with IR detection on-chip. The results obtained prove the operational functionality of these chips, and indicate the potential of these new devices for further applications in (bio)analytical chemistry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00216-004-2534-0 | DOI Listing |
Analyst
January 2025
Mechanobiology Institute (MBI), National University of Singapore, 5A Engineering Drive 1, 117411, Republic of Singapore.
Infrared spectro-microscopy is a powerful technique for analysing chemical maps of cells and tissues for biomedical and clinical applications, yet the strong water absorption in the mid-infrared region is a challenge to overcome, as it overlaps with the spectral fingerprints of biological components. Microfluidic chips offer ultimate control over the water layer thickness and are increasingly used in infrared spectro-microscopy. However, the actual impact of the water layer thickness on the instrument's performance is often left to the experimentalist's intuition and the peculiarities of specific instruments.
View Article and Find Full Text PDFRev Sci Instrum
January 2024
Université Paris Cité and Univ Paris Est Créteil, CNRS, LISA, F-75013 Paris, France.
The correct interpretation of infrared (IR) observations of planetary atmospheres requires an accurate knowledge of temperature and partial and global pressures. Precise laboratory measurements of absorption intensities and line profiles, in the 200-350 K temperature range, are, therefore, critical. However, for gases only existing in complex chemical equilibria, such as nitrous or hypobromous acids, it is not possible to rely on absolute pressure measurements to measure absolute integrated optical absorption cross sections or IR line intensities.
View Article and Find Full Text PDFHeliyon
November 2023
Canadian Light Source Inc., Saskatoon, SK S7N 2V3, Canada.
Synchrotron X-ray imaging and spectroscopy techniques were used for studying changes during post-harvest storage of food grains. Three varieties (AAC Spitfire, CDC Defy, and AAC Stronghold) of the Canada Western Amber Durum (CWAD) wheat class were stored for five weeks at 17 % moisture content (wb). Control (dry) and stored moistened seeds were analyzed for biochemical and nutritional changes using synchrotron bulk X-ray fluorescence spectroscopy (SR-XRF), X-ray fluorescence imaging (SR-XFI), and mid-infrared (mid-IR) spectroscopy at the Canadian Light Source (CLS), Saskatoon, SK.
View Article and Find Full Text PDFMater Horiz
January 2024
Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA.
This study provides the first experimental polarized intermolecular and intramolecular optical absorption components of field-induced polarons in regioregular poly(3-hexylthiophene-2,5-diyl), rr-P3HT, a polymer semiconductor. Highly aligned rr-P3HT thin films were prepared by a high temperature shear-alignment process that orients polymer backbones along the shearing direction. rr-P3HT in-plane molecular orientation was measured by electron diffraction, and out-of-plane orientation was measured through series of synchrotron X-ray scattering techniques.
View Article and Find Full Text PDFFoods
October 2023
Canadian Light Source Inc., Saskatoon, SK S7N 2V3, Canada.
Four varieties of barley (Esma, AC Metacalf, Tradition, and AB Cattlelac), representing four Canadian barley classes, were stored at 17% moisture content (mc) for 8 week. Stored barely was characterized using synchrotron X-ray phase contrast microcomputed tomography, synchrotron X-ray fluorescence imaging, and mid-infrared spectroscopy at the Canadian Light Source, Saskatoon. The deterioration was observed in all the selected varieties of barley at the end of 8 week of storage.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!