The biological significance of nuclear scaffold/matrix-attachment regions (S/MARs) remains a topic of long-standing interest. The key to understanding S/MAR behavior relies on determining the physical attributes of in vivo S/MARs and whether they serve as rigid or flexible chromatin loop anchors. To analyze S/MAR behavior, single and multiple copies of the S/MAR-containing constructs were introduced into various host genomes of transgenic mice and transfected cell lines. These in vivo integration events provided a system to study the association and integration patterns of each introduced S/MAR. By utilizing FISH to visualize directly the localization of S/MARs on the nuclear matrix or chromatin loop, we were able to assign specific attributes to the S/MAR. Surprisingly, when multiple-copy S/MARs were introduced they were selected and used as nuclear matrix anchors in a discriminatory manner, even though they all contained identical primary sequences. This selection process was probably mediated by S/MAR availability including binding strength and copy number, as reflected by the expression profiles and association of multi-copy tandem inserted constructs. Whereas S/MARs functioned as the mediators of loop attachment, they were used in a selective and dynamic fashion. Consequently, S/MAR anchors were necessary but not sufficient for chromatin loops to form. These observations reconcile many seemingly contradictory attributes previously associated with S/MARs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/jcs.00976 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!