Background: New methods have been used, with promising results, to treat full-thickness cartilage defects. The objective of the present study was to compare autologous chondrocyte implantation with microfracture in a randomized trial. We are not aware of any previous randomized studies comparing these methods.
Methods: Eighty patients without general osteoarthritis who had a single symptomatic cartilage defect on the femoral condyle in a stable knee were treated with autologous chondrocyte implantation or microfracture (forty in each group). We used the International Cartilage Repair Society, Lysholm, Short Form-36 (SF-36), and Tegner forms to collect data. An independent observer performed a follow-up examination at twelve and twenty-four months. Two years postoperatively, arthroscopy with biopsy for histological evaluation was carried out. The histological evaluation was done by a pathologist and a clinical scientist, both of whom were blinded to each patient's treatment.
Results: In general, there were small differences between the two treatment groups. At two years, both groups had significant clinical improvement. According to the SF-36 physical component score at two years postoperatively, the improvement in the microfracture group was significantly better than that in the autologous chondrocyte implantation group (p = 0.004). Younger and more active patients did better in both groups. There were two failures in the autologous chondrocyte implantation group and one in the microfracture group. No serious complications were reported. Biopsy specimens were obtained from 84% of the patients, and histological evaluation of repair tissues showed no significant differences between the two groups. We did not find any association between the histological quality of the tissue and the clinical outcome according to the scores on the Lysholm or SF-36 form or the visual analog scale.
Conclusions: Both methods had acceptable short-term clinical results. There was no significant difference in macroscopic or histological results between the two treatment groups and no association between the histological findings and the clinical outcome at the two-year time-point.
Level Of Evidence: Therapeutic study, Level I-1a (randomized controlled trial [significant difference]). See Instructions to Authors for a complete description of levels of evidence.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2106/00004623-200403000-00001 | DOI Listing |
Am J Sports Med
January 2025
Department of Orthopaedic Surgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA.
Background: Osteochondral allograft transplantation (OCA) is well established as a viable chondral restoration procedure for the treatment of symptomatic, focal chondral defects of the knee. The efficacy of secondary OCA in the setting of failed index cartilage repair or restoration is poorly understood.
Purpose: To evaluate radiographic and clinical outcomes, failures, and reoperations after OCA after failed index cartilage repair or restoration of the knee.
Arthrosc Sports Med Rehabil
December 2024
Department of Orthopedic Surgery, Sports Medicine & Shoulder Surgery, University of California, San Francisco, San Francisco, California, U.S.A.
Purpose: To evaluate the relationship between preoperative whole-joint imaging evaluation of the knee with patient-reported outcome (PRO) measures after cartilage restoration surgery (mosaicplasty, osteochondral allograft transplantation, matrix autologous chondrocyte implantation).
Methods: We retrospectively evaluated patients who underwent knee articular cartilage restoration at our institution from 2014 to 2020. The patients' knee magnetic resonance imaging (MRI) was evaluated with the Whole-Organ Magnetic Resonance Imaging Score (WORMS) and semiquantitative synovial inflammation imaging biomarkers of the preoperative MRI.
Pharmaceutics
December 2024
Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy.
The treatment of articular cartilage damage has always represented a problem of considerable practical interest for orthopedics. Over the years, many surgical techniques have been proposed to induce the growth of repairing tissue and limit degeneration. In 1994, the turning point occurred: implanted autologous cells paved the way for a new treatment option based more on regeneration than repair.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Biomedical Engineering Program, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon.
The limited self-repair capacity of cartilage due to its avascular and aneural nature leads to minimal regenerative ability. Autologous chondrocyte transplantation (ACT) is a popular treatment for cartilage defects but faces challenges due to chondrocyte dedifferentiation in later passages, which results in undesirable fibroblastic phenotypes. A promising treatment for cartilage injuries and diseases involves tissue engineering using cells (e.
View Article and Find Full Text PDFAm J Sports Med
January 2025
Department of Orthopaedic Surgery, Hospital for Special Surgery, New York, New York, USA.
Background: Failure of primary cartilage restoration procedures of the knee that proceed to necessitating revision cartilage procedures represent a challenging clinical scenario with variable outcomes reported in previous literature.
Purpose: To perform a systematic review and meta-analysis of clinical outcomes and adverse events after revision cartilage restoration procedures of the knee for failed primary cartilage procedures.
Study Design: Systematic review and meta-analysis; Level of evidence, 4.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!