We show that the products of SPO1 genes 44, 50, and 51 are required for the normal transition from early to middle gene expression during infection of Bacillus subtilis by bacteriophage SPO1; that they are also required for control of the shutoff of host DNA, RNA, and protein synthesis; and that their effects on host shutoff could be accounted for by their effects on the regulation of gene expression. These three gene products had four distinguishable effects in regulating SPO1 gene expression: (i) gp44-50-51 acted to restrain expression of all SPO1 genes tested, (ii) gp44 and/or gp50-51 caused additional specific repression of immediate-early genes, (iii) gp44 and/or gp50-51 stimulated expression of middle genes, and (iv) gp44 and/or gp50-51 stimulated expression of some delayed-early genes. Shutoff of immediate-early gene expression also required the activity of gp28, the middle-gene-specific sigma factor. Shutoff of host RNA and protein synthesis was accelerated by either the 44- single mutant or the 50(-)51(-) double mutant and more so by the 44(-)50(-)51(-) triple mutant. Shutoff of host DNA synthesis was accelerated by the mutants early in infection but delayed by the 44(-)50(-)51(-) triple mutant at later times. Although gp50 is a very small protein, consisting almost entirely of an apparent membrane-spanning domain, it contributed significantly to each activity tested. We identify SPO1 genes 41 to 51 and 53 to 60 as immediate-early genes; genes 27, 28, and 37 to 40 as delayed-early genes; and gene 52 as a middle gene.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC355963PMC
http://dx.doi.org/10.1128/JB.186.6.1785-1792.2004DOI Listing

Publication Analysis

Top Keywords

gene expression
20
spo1 genes
12
shutoff host
12
gp44 and/or
12
and/or gp50-51
12
genes
9
gene
8
expression
8
infection bacillus
8
bacillus subtilis
8

Similar Publications

Previous studies have reported that chronic lymphocytic leukemia (CLL) shows a de novo chromatin activation pattern as compared to normal B cells. Here, we explored whether the level of chromatin activation is related to the clinical behavior of CLL. We identified that in some regulatory regions, increased de novo chromatin activation is linked to clinical progression whereas, in other regions, it is associated with an indolent course.

View Article and Find Full Text PDF

De novo biosynthesis of quercetin in Yarrowia Lipolytica through systematic metabolic engineering for enhanced yield.

Bioresour Bioprocess

January 2025

Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China.

Kaempferol and quercetin possess various biological activities, making them valuable in food and medicine. However, their production via traditional methods is often inefficient. This study aims to address this gap by engineering the yeast Yarrowia lipolytica to achieve high yields of these flavonoids.

View Article and Find Full Text PDF

Aim: This study aimed to identify the genes associated with the development of lung adenocarcinoma (LUAD) and potential therapeutic targets.

Methods: Differentially expressed genes (DEGs) were identified by self-transcriptome sequencing of tumor tissues and paracancerous tissues resected during surgery and combined with The Cancer Genome Atlas (TCGA) data to screen for the genes associated with LUAD prognosis. The expression was validated at mRNA and protein levels, and the gene knockdown was used to examine the impact and underlying mechanisms on lung cancer cells.

View Article and Find Full Text PDF

Epigenetic regulation in hematopoietic stem cells (HSCs) research has emerged as a transformative molecular approach that enhances understanding of hematopoiesis and hematological disorders. This chapter investigates the intricate epigenetic mechanisms that control HSCs function, including deoxyribonucleic acid (DNA) methylation, histone modifications, and chromatin remodeling. It also explores the role of non-coding ribonucleic acid (RNAs) as epigenetic regulators, highlighting how changes in gene expression can occur without alterations to the DNA sequence.

View Article and Find Full Text PDF

Unlocking a Decade of Research on Embryo-Derived Extracellular Vesicles: Discoveries Made and Paths Ahead.

Stem Cell Rev Rep

January 2025

Department of Internal Medicine, Reproduction and Population Health, Faculty of Veterinary Medicine, University of Ghent, Salisburylaan 133, Merelbeke, B-9820, Belgium.

Over the past decade, research on embryo-derived extracellular vesicles (EVs) has unveiled their critical roles in embryonic development and intercellular communication. EVs secreted by embryos are nanoscale lipid bilayer vesicles that carry bioactive cargo, including proteins, lipids, RNAs, and DNAs, reflecting the physiological state of the source cells. These vesicles facilitate paracrine and autocrine signaling, influencing key processes such as cell differentiation, embryo viability, and endometrial receptivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!