Vegetative buds of peach (Prunus persica L. Batsch.) trees act as strong sinks and their bud break capacity can be profoundly affected by carbohydrate availability during the rest period (November-February). Analysis of xylem sap revealed seasonal changes in concentrations of sorbitol and hexoses (glucose and fructose). Sorbitol concentrations decreased and hexose concentrations increased with increasing bud break capacity. Sucrose concentration in xylem sap increased significantly but remained low. To clarify their respective roles in the early events of bud break, carbohydrate concentrations and uptake rates, and activities of NAD-dependent sorbitol dehydrogenase (SDH), sorbitol oxidase (SOX) and cell wall invertase (CWI) were determined in meristematic tissues, cushion tissues and stem segments. Only CWI activity increased in meristematic tissues shortly before bud break. In buds displaying high bud break capacity (during January and February), concentrations of sorbitol and sucrose in meristematic tissues were almost unchanged, paralleling their low rates of uptake and utilization by meristematic tissues, and indicating that sorbitol and sucrose play a negligible role in the bud break process. Hexose concentrations in meristematic tissues and glucose imported by meristematic tissues correlated positively with bud break capacity, suggesting that hexoses are involved in the early events of bud break. These findings were confirmed by data for buds that were unable to break because they had been collected from trees deprived of cold. We therefore conclude that hexoses are of greater importance than sorbitol or sucrose in the early events of bud break in peach trees.

Download full-text PDF

Source
http://dx.doi.org/10.1093/treephys/24.5.579DOI Listing

Publication Analysis

Top Keywords

bud break
40
meristematic tissues
24
break capacity
16
early events
12
events bud
12
sorbitol sucrose
12
break
11
bud
10
break peach
8
peach prunus
8

Similar Publications

Bud dormancy is a critical adaptive trait in woody plants, essential for enduring harsh winter conditions. The relationship between bud break timing and cold resistance is complex and has been a subject of debate. This study utilizes a Genome-Wide Association Study (GWAS) on 201 natural mulberry populations to identify the gene, which shows the strongest association with bud break timing.

View Article and Find Full Text PDF

Background: Geraniums (Pelargonium) are among the most popular flowers worldwide. Viral infection is one of the main problems of the genus Pelargonium, and the production of virus-free mother plants is necessary for large-scale geranium propagation and exchange. Meristem culture and thermotherapy are two effective procedures that have been widely adopted to produce healthy virus-free plant stocks.

View Article and Find Full Text PDF

CsCBF1/CsZHD9-CsMADS27, a critical gene module controlling dormancy and bud break in tea plants.

Plant J

January 2025

Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs/National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang, China.

Tea plants are perennial evergreen woody crops that originated in low latitudes but have spread to high latitudes. Bud dormancy is an important adaptation mechanism to low temperatures, and its timing is economically significant for tea production. However, the core molecular networks regulating dormancy and bud break in tea plants remain unclear.

View Article and Find Full Text PDF

Spatiotemporal Molecular Architecture of Lineage Allocation and Cellular Organization in Tooth Morphogenesis.

Adv Sci (Weinh)

December 2024

Department of Geriatric Dentistry, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China.

Article Synopsis
  • The study focuses on the complex development of teeth in vertebrates, utilizing advanced genomic techniques to explore how teeth are formed and organized over time and space.
  • It identifies twelve spatial compartments and seventeen unique cell clusters that play crucial roles in tooth development, revealing that most lineage species appear earlier in the tooth bud than previously thought.
  • The research uncovers a new mode of tooth tissue arrangement and highlights the interplay between mechanical signals and biochemical processes in driving tooth formation, while also linking genes to tooth abnormalities.
View Article and Find Full Text PDF
Article Synopsis
  • Bud dormancy is crucial for flowering and fruit production, controlled by genetic and environmental factors, but specific mechanisms in temperate trees like Quercus suber are not well understood.
  • Research indicates that the genes CENTRORADIALIS-LIKE (CENL) and DORMANCY-ASSOCIATED PROTEIN 1 (QsDYL1) are involved in growth cessation and serve as markers for dormancy in Q. suber.
  • Analysis of gene expression and epigenetic changes during dormancy reveals that different chromatin modifiers influence the transition between dormancy and active bud formation, providing insights into how trees may adapt to climate change.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!