The anti-proliferative effect of Bcl-2 acts mainly at the level of the G0/G1 phase of the cell cycle. Deletions and point mutations in the bcl-2 gene show that the anti-proliferative activity of Bcl-2, can in some cases, be dissociated from its anti-apoptotic function. This indicates that the effect of Bcl-2 on cell cycle progression can be a direct effect and not only a consequence of its anti-apoptotic activity. Bcl-2 appears to mediate its anti-proliferative effect by acting on both signal transduction pathways (NFAT, ERK) and on specific cell cycle regulators (p27, p130).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbamcr.2003.10.014DOI Listing

Publication Analysis

Top Keywords

cell cycle
12
activity bcl-2
8
bcl-2
6
control proliferation
4
proliferation bcl-2
4
bcl-2 family
4
family members
4
members anti-proliferative
4
anti-proliferative bcl-2
4
bcl-2 acts
4

Similar Publications

Organosulfur Compounds in Garlic for Gastric Cancer Treatment: Anticancer Effects, Overcoming Drug Resistance, and Mechanisms.

Recent Pat Anticancer Drug Discov

January 2025

Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, 300072, P.R. China.

Garlic has been consumed globally as a functional food and traditional medicine for various ailments. Its active organosulfur compounds (OSCs) have demonstrated significant anticancer properties, particularly against gastric cancer. However, a comprehensive review of these effects and the underlying molecular mechanisms, including their role in overcoming drug resistance, is currently lacking.

View Article and Find Full Text PDF

The study of chalcone-1,2,3-triazole hybrids for anticancer activity is quite a recent area of focus, primarily because of the increasing demand for developing new drugs to treat cancer. The chalcones and 1,2,3-triazole rings in hybrid compounds has recently emerged as a promising strategy for developing novel anticancer agents. The 1,2,3-triazole ring, known for its stability and hydrogen bonding capabilities, enhances the target binding affinity of these hybrids.

View Article and Find Full Text PDF

The stomatal phenotype is a crucial microscopic characteristic of the leaf surface, and modulating the stomata of maize leaves can enhance photosynthetic carbon assimilation and water use efficiency, thereby playing a vital role in maize yield formation. The evolving imaging and image processing technologies offer effective tools for precise analysis of stomatal phenotypes. This study employed Jingnongke 728 and its parental inbred to capture stomatal images from various leaf positions and abaxial surfaces during key reproductive stages using rapid scanning electron microscopy.

View Article and Find Full Text PDF

Phosphoproteomics profiling of sorafenib-resistant hepatocellular carcinoma patient-derived xenografts reveals potential therapeutic strategies.

iScience

January 2025

Liver Cancer Institute and Institutes of Biomedical Sciences, Zhongshan Hospital, Fudan University, Shanghai, P.R. China.

Hepatocellular carcinoma (HCC) is the most common form of primary liver cancer with poor prognosis. Sorafenib, a first-line treatment for advanced HCC, has shown limited clinical benefits due to the onset of drug resistance. Thus, it is imperative to comprehend the mechanisms underlying sorafenib resistance and explore strategies to overcome or delay it.

View Article and Find Full Text PDF

RNA polymerase II (Pol II) regulates eukaryotic gene expression through dynamic phosphorylation of its C-terminal domain (CTD). Phosphorylation at Ser2 and Thr4 on the CTD is crucial for RNA 3' end processing and facilitating the recruitment of cleavage and termination factors. However, the transcriptional roles of most CTD-binding proteins remain poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!