The poplar K+ channel KPT1 is associated with K+ uptake during stomatal opening and bud development.

Plant J

Julius-von-Sachs-Institut for Bioscience, Molecular Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs-Platz 2, 97082 Würzburg, Germany.

Published: March 2004

To gain insights into the performance of poplar guard cells, we have measured stomatal conductance and aperture, guard cell K+ content and K+-channel activity of the guard cell plasma membrane in intact poplar leaves. In contrast to Arabidopsis, broad bean and tobacco grown under same conditions, poplar stomata operated just in the dynamic range - any change in conductance altered the rate of photosynthesis. In response to light, CO2 and abscisic acid (ABA), the stomatal opening velocity was two to five times faster than that measured for Arabidopsis thaliana, Nicotiana tabacum and Vicia faba. When stomata opened, the K+ content of guard cells increased almost twofold, indicating that the very fast stomatal opening in this species is mediated via potassium uptake. Following impalement of single guard cells embedded in their natural environment of intact leaves with triple-barrelled microelectrodes, time-dependent inward and outward-rectifying K+-channel-mediated currents of large amplitude were recorded. To analyse the molecular nature of genes encoding guard cell K+-uptake channels, we cloned K+-transporter Populustremula (KPT)1 and functionally expressed this potassium channel in a K+-uptake-deficient Escherichia coli mutant. In addition to guard cells, this K+-transporter gene was expressed in buds, where the KPT1 gene activity strongly correlated with bud break. Thus, KPT1 represents one of only few poplar genes associated with bud flush.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.0960-7412.2003.02008.xDOI Listing

Publication Analysis

Top Keywords

guard cells
16
stomatal opening
12
guard cell
12
guard
7
poplar
5
poplar channel
4
kpt1
4
channel kpt1
4
kpt1 associated
4
associated uptake
4

Similar Publications

Discovery of PPAR Alpha Lipid Pathway Modulators That Do Not Bind Directly to the Receptor as Potential Anti-Cancer Compounds.

Int J Mol Sci

January 2025

Medical Research Core Facility and Platforms (MRCFP)-Drug Discovery Platform, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs (MNGHA), Riyadh 11481, Saudi Arabia.

Peroxisome proliferator-activated receptors (PPARs) are considered good drug targets for breast cancer because of their involvement in fatty acid metabolism that induces cell proliferation. In this study, we used the KAIMRC1 breast cancer cell line. We showed that the PPARE-Luciferase reporter gets highly activated without adding any exogenous ligand when PPAR alpha is co-transfected, and the antagonist GW6471 can inhibit the activity.

View Article and Find Full Text PDF

The emergence of multidrug-resistant bacteria presents a significant global health threat. Liposomal antibiotics have shown a potential to improve antibiotic delivery and efficacy. This study aimed to develop liposomes encapsulating tobramycin (TOB) and methylglyoxal (MGO) to enhance TOB activity while reducing bacterial adhesion and biofilm formation.

View Article and Find Full Text PDF

Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is an aggressive orphan hematopoietic malignancy characterized by cutaneous and systemic hematologic involvement. BPDCN is frequently misidentified, but early, accurate diagnosis is critical to extending patient survival using tagraxofusp, a first-in-class CD123-targeted therapy, and increasing their chances of receiving a potentially curative stem cell transplantation. Cases of BPDCN in countries of the Gulf Cooperation Council are lower than the extrapolated incidence from other geographic locations due to lack of awareness of key diagnostic features, lack of consensus on the minimal phenotype for diagnosis, and lack of local immunohistochemistry testing facilities, contributing to underdiagnosis in this region.

View Article and Find Full Text PDF

Accelerating stomatal kinetics through synthetic optogenetics and mutations that enhance guard cell K+ flux has proven a viable strategy to improve water use efficiency and biomass production. Stomata of the model C4 species Gynandropsis gynandra, a relative of the C3 plant Arabidopsis thaliana, are similarly fast to open and close. We identified and cloned the guard cell rectifying outward K+ channel (GROK) of Gynandropsis and showed that GROK is preferentially expressed in stomatal guard cells.

View Article and Find Full Text PDF

A key feature of stress responses [closely relative to the phytohormone abscisic acid (ABA)] and associated acclimation in plants is the dynamic adjustments and related optimisation of carbohydrate content between sink and source organs. The production of stomata, which consist of a pore between two adjacent guard cells, are central to plant adaptation to changing environment conditions. In this context, ABA is a core modulator of environmentally determined stomatal development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!