Detailed studies of the azimuthal dependence of the mean fragment and flow energies in the Au+Au and Xe+CsI systems are reported as a function of incident energy and centrality. Comparisons between data and model calculations show that the flow energy values along different azimuthal directions could be viewed as snapshots of the fireball expansion with different exposure times. For the same number of participating nucleons more transversally elongated participant shapes from the heavier system produce less collective transverse energy. Good agreement with Boltzmann-Uehling-Uhlenbeck calculations is obtained for a soft nuclear equation of state.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.92.072303DOI Listing

Publication Analysis

Top Keywords

azimuthal dependence
8
dependence collective
4
collective expansion
4
expansion symmetric
4
symmetric heavy-ion
4
heavy-ion collisions
4
collisions detailed
4
detailed studies
4
studies azimuthal
4
dependence fragment
4

Similar Publications

This work investigates the dynamic behavior of droplets on superhydrophobic cylindrical surfaces with a convex ridge through experimental analysis, focusing on the effects of varying the diameter ratio ( = ) and the ridge width ratio (δ = ). Impact morphology diagrams are established to reveal the morphology transition of the droplet as a function of and δ. The splash threshold is obtained, and the energy loss during the collision process is analyzed by examining the recovery coefficient and the splitting angle, with the splitting threshold found to be dependent on δ.

View Article and Find Full Text PDF

Liquid water still remains an ubiquitous liquid whose molecular organization requires careful investigation. In this work, we present a study of the second harmonic scattering (SHS) intensity for two different scattering angles, namely, the forward and the right angle geometries. This method performed at optical wavelengths is indeed selective toward long correlation lengths.

View Article and Find Full Text PDF

Mechanically Interlocked Molecular Rotors on Pb(100).

Nano Lett

January 2025

Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität, 24098 Kiel, Germany.

The mechanical coupling between molecules represents a promising route for the development of molecular machines. Constructing molecular gears requires easily rotatable and mutually interlocked pinions. Using scanning tunneling microscopy (STM), it is demonstrated that aluminum phthalocyanine (AlPc) molecules on Pb(100) exhibit these properties.

View Article and Find Full Text PDF
Article Synopsis
  • Dengue virus (DENV) is a significant global health issue, with severe cases potentially worsened by antibodies that can enhance infection rather than neutralize it.
  • Researchers are exploring the possibility of targeting DENV-infected cells for immune clearance to avoid antibody-dependent enhancement (ADE).
  • This study found that DENV structural proteins are present on infected cell surfaces and can be recognized by immune antibodies, which may facilitate the clearance of infected cells without enriching viral material in certain immune cells.
View Article and Find Full Text PDF

Taking into account phase-polarization interactions is crucial for the formation of spatially structured laser beams. The effects that arise in this context can lead to the modulation of individual field components and the transformation of the overall light field. In this study, we investigate the impact of phase and polarization distributions with radial dependencies in polar coordinates on the longitudinal component of laser beams passing through a transmissive spatial light modulator (SLM) based on twisted nematic liquid crystals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!