Steady-state velocity distributions of an oscillated granular gas.

Phys Rev E Stat Nonlin Soft Matter Phys

Center for Nonlinear Dynamics and Department of Physics, University of Texas, Austin, Texas 78712, USA.

Published: January 2004

We use a three-dimensional molecular dynamics simulation to study the single particle distribution function of a dilute granular gas driven by a vertically oscillating plate at high accelerations (15g-90g). We find that the density and the temperature fields are essentially time-invariant above a height of about 40 particle diameters, where typically 20% of the grains are contained. These grains form the nonequilibrium steady-state granular gas with a Knudsen number unity or greater. In the steady-state region, the probability distribution function of the horizontal velocity c(x) (scaled by the local horizontal temperature) is found to be nearly independent of height, even though the hydrodynamic fields vary with height. We find that the high energy tails of the distribution function are described by a stretched exponential approximately exp(-Bcalphax), where alpha depends on the restitution coefficient e and falls in the range 1.2

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.69.011301DOI Listing

Publication Analysis

Top Keywords

granular gas
12
distribution function
12
steady-state velocity
4
velocity distributions
4
distributions oscillated
4
oscillated granular
4
gas three-dimensional
4
three-dimensional molecular
4
molecular dynamics
4
dynamics simulation
4

Similar Publications

Computational Model of the Effective Thermal Conductivity of a Bundle of Round Steel Bars.

Materials (Basel)

January 2025

Institute of Electric Power Engineering, Czestochowa University of Technology, Armii Krajowej 17, 42-200 Czestochowa, Poland.

During the heat treatment of round steel bars, a heated charge in the form of a cylindrically formed bundle is placed in a furnace. This type of charge is a porous granular medium in which a complex heat flow occurs during heating. The following heat transfer mechanisms occur simultaneously in this medium: conduction in bars, conduction within the gas, thermal radiation between the surfaces of the bars, and contact conduction across the joints between the adjacent bars.

View Article and Find Full Text PDF

Mesoporous silica exhibits a diverse range of applications owing to its pore structure and inter-pore correlation. Consequently, quantitative characterization of its mesoscopic structure is extremely crucial to reciprocate its potential applications. In this work, we utilized the chemical and aerosol routes to successfully synthesize granular, porous silica with an average pore size in the range of ∼5-10 nm and different degrees of structural correlation among its pores.

View Article and Find Full Text PDF

Impact of phosphorus on the functional properties of extracellular polymeric substances recovered from sludge.

Water Res

December 2024

Deptartment of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft, HZ 2629, the Netherlands; Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Aalborg, Denmark.

Extracellular Polymeric Substances (EPS) are ubiquitous in biological wastewater treatment (WWT) technologies like activated sludge systems, biofilm reactors, and granular sludge systems. EPS recovery from sludge potentially offers a high-value material for the industry. It can be utilized as a coating in slow-release fertilizers, as a bio-stimulant, as a binding agent in building materials, for the production of flame retarding materials, and more.

View Article and Find Full Text PDF

Resistant for Biodegradation of Diesel Fuel at High Concentration and Low Temperature.

Microorganisms

December 2024

Department of Civil and Environmental Engineering, University of Strathclyde, James Weir Building, Level 5, 75 Montrose Street, Glasgow G11XJ, UK.

The resistance of 16 strains to diesel fuel was studied. The minimal inhibitory concentrations of diesel fuel against were 4.0-64.

View Article and Find Full Text PDF

Mechanical Behavior of Flexible Fiber Assemblies: Review and Future Perspectives.

Materials (Basel)

December 2024

Huanjiang Laboratory, Zhuji 311800, China.

Flexible fibers, such as biomass particles and glass fibers, are critical raw materials in the energy and composites industries. Assemblies of the fibers show strong interlocking, non-Newtonian and compressible flows, intermittent avalanches, and high energy dissipation rates due to their elongation and flexibility. Conventional mechanical theories developed for regular granular materials, such as dry sands and pharmaceutical powders, are often unsuitable for modeling flexible fibers, which exhibit more complex mechanical behaviors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!