Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We study the motion of a particle sliding under the action of an external field on a stochastically fluctuating one-dimensional Edwards-Wilkinson surface. Numerical simulations using the single-step model shows that the mean-square displacement of the sliding particle shows distinct dynamic scaling behavior, depending on whether the surface fluctuates faster or slower than the motion of the particle. When the surface fluctuations occur on a time scale much smaller than the particle motion, we find that the characteristic length scale shows anomalous diffusion with xi(t) approximately t(2phi), where phi approximately 0.67 from numerical data. On the other hand, when the particle moves faster than the surface, its dynamics is controlled by the surface fluctuations and xi(t) approximately t(1/2). A self-consistent approximation predicts that the anomalous diffusion exponent is phi=2/3, in good agreement with simulation results. We also discuss the possibility of a slow crossover toward asymptotic diffusive behavior. The probability distribution of the displacement has a Gaussian form in both the cases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.69.011105 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!