Complete characterization of a plasma mirror for the production of high-contrast ultraintense laser pulses.

Phys Rev E Stat Nonlin Soft Matter Phys

Service des Photons, Atomes et Molécules, Commissariat à l'Energie Atomique, DSM/DRECAM, CEN Saclay, 91191 Gif sur Yvette, France.

Published: February 2004

Improving the temporal contrast of ultrashort and ultraintense laser pulses is a major technical issue for high-field experiments. This can be achieved using a so-called "plasma mirror." We present a detailed experimental and theoretical study of the plasma mirror that allows us to quantitatively assess the performances of this system. Our experimental results include time-resolved measurements of the plasma mirror reflectivity, and of the phase distortions it induces on the reflected beam. Using an antireflection coated plate as a target, an improvement of the contrast ratio by more than two orders of magnitude can be achieved with a single plasma mirror. We demonstrate that this system is very robust against changes in the pulse fluence and imperfections of the beam spatial profile, which is essential for applications.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.69.026402DOI Listing

Publication Analysis

Top Keywords

plasma mirror
16
ultraintense laser
8
laser pulses
8
complete characterization
4
plasma
4
characterization plasma
4
mirror
4
mirror production
4
production high-contrast
4
high-contrast ultraintense
4

Similar Publications

We report on the design of an all-mirror wavefront-division interferometer capable of spectroscopic studies across multiple spectral ranges-from the plasma frequencies of metals to terahertz wavelengths and beyond. The proposed method leverages the properties of laser sources with high spatial coherence. A theoretical framework for the interferometer scheme is presented, along with an analytical solution for determining the far-field interference pattern, which is validated through both optical propagation simulations and experimental results.

View Article and Find Full Text PDF

Translational validity of mouse models of Alzheimer's disease (AD) is variable. Because change in weight is a well-documented precursor of AD, we investigated whether diversity of human AD risk weight phenotypes was evident in a longitudinally characterized cohort of 1,196 female and male humanized APOE (hAPOE) mice, monitored up to 28 months of age which is equivalent to 81 human years. Autoregressive Hidden Markov Model (AHMM) incorporating age, sex, and APOE genotype was employed to identify emergent weight trajectories and phenotypes.

View Article and Find Full Text PDF

Background: The approval of new disease-modifying therapies by the U.S. Food and Drug Administration and the European Medicine Agency makes it necessary to optimize non-invasive and cost-effective tools for the identification of subjects at-risk of developing Alzheimer's Disease (AD).

View Article and Find Full Text PDF

Objectives: To investigate the occurrence and dynamics of secretory component-containing antibodies towards citrullinated proteins (SC ACPA) in plasma from pre-symptomatic individuals subsequently developing rheumatoid arthritis (RA).

Methods: We studied 319 individuals who had donated plasma prior to RA onset (median predating time 4.7 years), whereof 181 also donated samples after diagnosis.

View Article and Find Full Text PDF

Objective: This study aimed to evaluate the chemical solubility (CS) and conduct a comprehensive physicochemical characterization of several experimental and commercial lithium silicate-based glass-ceramics towards an understanding of the chemical processes governing dissolution in these glass-ceramics.

Methodology: Glass-ceramic (GC) samples were categorized into two groups: experimental materials featuring lithium metasilicate crystals (GCE1 and GCE2); and five commercial brands relying mostly on lithium disilicate (Celtra®Duo, IPS e.max®CAD, Straumann®n!ce®, CEREC Tessera™, and VITA Suprinity®).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!