This paper presents a study of the influence of solar activity on the earth's temperature. In particular, we focus on the repercussion of the fluctuations of the solar irradiance on the temperature of the Northern and Southern hemispheres as well as on land and ocean regions. While solar irradiance data are not directly analyzed, we make use of a published solar irradiance reconstruction for long-time-scale fluctuations, and for short-time-scale fluctuations we hypothesize that solar irradiance and solar flare intermittency are coupled in such a way that the solar flare frequency fluctuations are stochastically equivalent to those of the solar irradiance. The analysis is based upon wavelet multiresolution techniques and scaling analysis methods for processing time series. The limitations of the correlation analysis applied to the short-time-scale fluctuations are discussed. The scaling analysis uses both the standard deviation and the entropy of the diffusion generated by the temperature signals. The joint use of these two scaling methods yields evidence of a Lévy component in the temporal persistence of the temperature fluctuations within the temporal range from a few weeks to a few years. This apparent Lévy persistence of the temperature fluctuations is found, by using an appropriate model, to be equivalent to the Lévy scaling of the solar flare intermittency. The mean monthly temperature data sets cover the period from 1856 to 2002.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.69.026303 | DOI Listing |
Int J Surg Case Rep
January 2025
Head and neck Surgery Department, Khalili Hospital, Shiraz University of Medical Sciences, Shiraz, Iran. Electronic address:
Background: Lentigo maligna (LM) and lentigo maligna melanoma (LMM) are the most prevalent subtypes of melanoma, primarily affecting sun-exposed areas of the face in individuals aged 65 to 80 years. LM accounts for approximately 80 % of in situ melanomas and carries a risk of progression to LMM, which constitutes 4 % to 15 % of global cutaneous melanoma cases. This report discusses the clinical challenges and management strategies for recurrent LM, with an emphasis on accurate diagnosis and surgical intervention.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou 256606, China.
Due to the high viscosity and low fluidity of viscous crude oil, how to effectively recover spilled crude oil is still a major global challenge. Although solar thermal absorbers have made significant progress in accelerating oil recovery, its practical application is largely restricted by the variability of solar radiation intensity, which is influenced by external environmental factors. To address this issue, this study created a new composite fiber that not only possesses solar energy conversion and storage capabilities but also facilitates crude oil removal.
View Article and Find Full Text PDFSensors (Basel)
January 2025
European Southern Observatory, Santiago 7630000, Chile.
The most widely used radiance sensor for monitoring Night Sky Brightness (NSB) is the Sky Quality Meter (SQM), making its measurement stability fundamental. A method using the Sun as a calibrator was applied to analyse the quality of the measures recorded in the Veneto Region (Italy) and at La Silla (Chile). The analysis mainly revealed a tendency toward reductions in measured NSB due to both instrument ageing and atmospheric variations.
View Article and Find Full Text PDFMolecules
January 2025
College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China.
Daytime radiative cooling, based on selective infrared emissions through atmospheric transparency windows to outer space and the reflection of solar irradiance, is a zero-energy and environmentally friendly cooling technology. Poly(ethylene oxide) (PEO) electrospun membranes have both selective mid-infrared emissions and effective sunlight reflection, inducing excellent daytime radiative cooling performance. However, PEO is highly water soluble, which makes electrospun PEO membranes unable to cope with rainy conditions when used for outdoor daytime radiative cooling.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA.
Photocatalytic water disinfection technology is highly promising in off-grid areas due to abundant year-round solar irradiance. However, the practical use of powdered photocatalysts is impeded by limited recovery and inefficient inactivation of stress-resistant bacteria in oligotrophic surface water. Here we prepare a floatable monolithic photocatalyst with ZIF-8-NH loaded Ag single atoms and nanoparticles (Ag/ZIF).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!