In a recent experiment, we uncovered an unconventional liquid crystal (LC) orientation transition on microtextured substrates consisting of alternating horizontal and vertical corrugations. When the period of alternation was decreased toward approximately 1 microm, the LC alignment underwent an abrupt transition from inhomogeneous planar to a more uniform configuration with a large pretilt angle ( approximately 40 degrees ). With the aid of a model based on the competition between the Frank-Oseen elastic energy and a phenomenological surface potential of the form W(theta,phi)=(1/2)W((2))(theta) sin(2) theta+(1/4)W((4))(theta) sin(4) theta+(1/2)W(phi) cos(2) theta sin(2) phi(x,y) (where theta and phi are, respectively, the pretilt and azimuthal angles of the LC director and W((2))(theta), W((4))(theta), and W(phi) are constants) that demonstrated good agreement with experiment, we investigated the microscopic origin of the observed transition. It was found that this transition comprises two steps. First, the LC director homogenizes toward the phi=45 degrees azimuthal direction in the plane to relax the elastic energy. The resulting rise in azimuthal anchoring energy subsequently drives the LC to adopt a finite pretilt. The values of the W's deduced from the model reveal that the polar anchoring energy is about approximately 1/10 of the typical values, with the sin(4) theta term dominating the sin(2) theta term. We present a possible explanation for this unexpected finding.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.69.021704 | DOI Listing |
J Nat Prod
January 2025
Department of Nephrology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, People's Republic of China.
In the search for novel natural products with hepatoprotective effects against acetaminophen-induced acute liver injury, the marine-derived fungus WHUF0198 was investigated. Seventeen undescribed pyranopyridone alkaloids, aculeapyridones A-Q (-), were isolated by bioactivity-guided fractionation of an extract obtained by coculture of the WHUF0198 with the mangrove-associated fungus sp. DM27.
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
August 2024
We simplify, to first order in , the generalized, special relativistic treatment of a Doppler shift from an arbitrarily translating mirror originally derived by Ashworth and Davies [Proc. IEEE64, 280 (1976)IEEPAD0018-921910.1109/PROC.
View Article and Find Full Text PDFSoft Matter
January 2025
Department of Physics, Kyoto University, Kyoto 606-8502, Japan.
This study explores the influence of charge distribution and molecular shape on the stability of ferroelectric nematic liquid crystalline phases through atomistic simulations of DIO molecules. We demonstrate the role of dipole-dipole interactions and molecular shape in achieving polar ordering by simulating charged and chargeless topologies, and analysing positional and orientational pair-distribution functions. The charged DIO molecules exhibit head-to-tail and side-by-side parallel alignments conducive to long-range polar order, whereas the chargeless molecules show no polar ordering.
View Article and Find Full Text PDFAnal Chem
January 2025
Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal 576104, India.
Slippery liquid-infused porous surfaces (SLIPSs) are a class of surface that offers low contact angle hysteresis and low tilt angle for water droplet shedding. This property also endows the surface with pinning-free evaporation, which in turn has been exploited for analyte concentration enrichment for Surface Enhanced Raman Spectroscopic applications and antibiofouling. Herein, we demonstrate a facile approach for creating SLIPS with low contact angle hysteresis and low tilt angle for water shedding by coating the equal-volume mixture of polydimethylsiloxane (PDMS) and silicone oil.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
School of Environmental Science and Engineering, Shenzhen Key Laboratory of Municipal Solid Waste Recycling Technology and Management, Southern University of Science and Technology, Shenzhen 518055, China.
Solid-liquid biphasic absorbents are a promising solution for overcoming the high-energy consumption challenge faced by liquid amine-based CO capture technologies. However, their practical applications are often hindered by difficulties in separating viscous solid-phase products. This study introduces a novel nonaqueous absorbent system (PD/PZ/NMP) composed of 4-amino-1-methylpiperidine (PD), piperazine (PZ), and -methyl-2-pyrrolidone (NMP), engineered to produce easily separable powdery products.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!