Overdamped motion of Brownian particles in tilted piecewise linear periodic potentials is considered. Explicit algebraic expressions for the diffusion coefficient, current, and coherence level of Brownian transport are derived. Their dependencies on temperature, tilting force, and the shape of the potential are analyzed. The necessary and sufficient conditions for the nonmonotonic behavior of the diffusion coefficient as a function of temperature are determined. The diffusion coefficient and coherence level are found to be extremely sensitive to the asymmetry of the potential. It is established that at the values of the external force, for which the enhancement of diffusion is most rapid, the level of coherence has a wide plateau at low temperatures with the value of the Péclet factor 2. An interpretation of the amplification of diffusion in comparison with free thermal diffusion in terms of probability distribution is proposed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.69.021111 | DOI Listing |
Chembiochem
January 2025
University of Teramo: Universita degli Studi di Teramo, Veterinary Medicine, Piano d'Accio snc, 64100, Teramo, ITALY.
In this study, we employed a novel fluorescent probe, RO7304924-which selectively targets cannabinoid 2 receptor (CB2R)-to assess the lateral mobility of CB2R within the plasma membrane of Chinese hamster ovary cells stably expressing a functional, untagged receptor variant. Utilizing confocal fluorescence recovery after photobleaching (FRAP), we quantified the diffusion coefficient and mobile fraction of CB2R, thereby demonstrating the efficacy of RO7304924 as an innovative tool for elucidating the dynamics of this major endocannabinoid-binding G protein-coupled receptor. Our present findings highlight the potential of combining advanced ligand-based fluorescent probes with FRAP for future investigations into the biochemical details of CB2R mobility in living cells, and its impact on receptor-dependent cellular processes.
View Article and Find Full Text PDFWe present the first, to our knowledge, metasurface holographic display method with exceptional fidelity and minimal edge noise, based on highly uniform flat-top light generated by a digital micromirror device (DMD). Based on the error-diffusion algorithm and iterative refinement process, the amplitude distribution of the initial Gaussian light was dynamically closed-loop modulated, and the standard difference of the intensity of the 3 mm diameter center flat-top beam was reduced to less than 3.4%.
View Article and Find Full Text PDFAbdom Radiol (NY)
January 2025
Department of Medical Imaging, Tongji Hospital, Tongji University, No. 389, Xincun Road, Putuo District, Shanghai, 200065, China.
Objectives: This study aimed to compare apparent diffusion coefficient (ADC) values derived from diffusion-weighted imaging (DWI) of different Borrmann types of advanced gastric cancer (AGC) and correlate these ADC values with Ki-67 expression and serum CEA levels in AGC.
Methods: A total of 84 patients with AGC who underwent DWI of the upper abdomen before tumor resection in our hospital between June 2014 and July 2018 were included in the present study. DWI was obtained with a single-shot echo planar imaging sequence in the axial plane (b values: 0, 100, 700 and 1000 s/mm).
ACS Appl Mater Interfaces
January 2025
Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xìan, Shaanxi 710049, China.
Prussian blue analogues (PBAs) show great promise as cathode candidates for aqueous zinc-ion batteries thanks to their high operating voltage, open-framework structure, and low cost. However, suffering from numerous vacancies and crystal water, the electrochemical performance of PBAs remains unsatisfactory, with limited capacity and poor cycle life. Here, a simple coprecipitation method is shown to synthesize well-crystallized cobalt hexacyanoferrate (CoHCF) with a small amount of water and high specific surface area.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Advanced Computing, Mathematics and Data Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, MS J7-10, Richland, Washington 99352, USA.
We report the values of the collision integrals, needed for the calculation of the macroscopic transport properties such as viscosity (η) and diffusion coefficient (D) of gases within the Chapman-Enskog kinetic gas theory, for a generalized Lennard-Jones potential (gLJ), a more general potential with an adjustable long range 1/r dependence that can describe a wide range of intermolecular interactions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!