Electromagnetically induced quantum memory.

Phys Rev Lett

Friedrich-Schiller-Universität, Institut für Optik und Quantenelektronik, Max-Wien-Platz 1, D-07743 Jena, Germany.

Published: January 2004

We discuss the problem of creating coherence in an optically driven quantum system in conditions where decoherence is caused by the laser field itself, due to coupling of the system to a rapidly decaying state or continuum. It is shown that by applying an additional laser field between this state and a bound state the relaxation channel can be suppressed as a result of a "dark state" formation, giving rise to long living Rabi oscillations in the system. It is found that the same mechanism of preserving coherence exists in systems with level splitting or degeneracy, where the driving field interacts with multiple resonant sublevels simultaneously. We also show that specific coherent propagation phenomena assisted by the interference suppression of decoherence can be observed under these conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.92.043002DOI Listing

Publication Analysis

Top Keywords

laser field
8
electromagnetically induced
4
induced quantum
4
quantum memory
4
memory discuss
4
discuss problem
4
problem creating
4
creating coherence
4
coherence optically
4
optically driven
4

Similar Publications

When performing effect studies to investigate the impact of microplastic (MP) on cell lines, algae, or daphnia, it is advantageous if such experiments can be performed without the use of surfactants. The need for surfactants arises from the fact that finely milled pristine MP particles generally are hydrophobic. Methods for the preparation of larger amounts of hydrophilic and hence artificially aged MP particles and approaches for their characterization are of high importance.

View Article and Find Full Text PDF

Background: In neuroscience, Ca imaging is a prevalent technique used to infer neuronal electrical activity, often relying on optical signals recorded at low sampling rates (3 to 30 Hz) across multiple neurons simultaneously. This study investigated whether increasing the sampling rate preserves critical information that may be missed at slower acquisition speeds.

Methods: Primary neuronal cultures were prepared from the cortex of newborn pups.

View Article and Find Full Text PDF

Ground-based LiDAR technology has been widely applied in various fields for acquiring 3D point cloud data, including spatial coordinates, digital color information, and laser reflectance intensities (I-values). These datasets preserve the digital information of scanned objects, supporting value-added applications. However, raw point cloud data visually represent spatial features but lack attribute information, posing challenges for automated object classification and effective management.

View Article and Find Full Text PDF

Single-Photon Avalanche Photodiodes (SPADs) are increasingly utilized in high-temperature-operated, high-performance Light Detection and Ranging (LiDAR) systems as well as in ultra-low-temperature-operated quantum science applications due to their high photon sensitivity and timing resolution. Consequently, the jitter value of SPADs at different temperatures plays a crucial role in LiDAR systems and Quantum Key Distribution (QKD) applications. However, limited studies have been conducted on this topic.

View Article and Find Full Text PDF

On the Measurement of Laser Lines in 3D Space with Uncertainty Estimation.

Sensors (Basel)

January 2025

InViLab, Department of Electromechanical Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.

Laser-based systems, essential in diverse applications, demand accurate geometric calibration to ensure precise performance. The calibration process of the system requires establishing a reliable relationship between input parameters and the corresponding 3D description of the outgoing laser beams. The quality of the calibration depends on the quality of the dataset of measured laser lines.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!