Kinetic eigenmodes of plasma oscillations in a weakly collisional plasma, described by a collision operator of the Fokker-Planck type, are obtained in closed form for initial-value as well as for boundary-value problems. These eigenmodes, which are smooth and compose a complete discrete spectrum, play the same role for weakly collisional plasmas as the Case-Van Kampen modes do for collisionless plasmas.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.92.065002 | DOI Listing |
Phys Rev E
October 2024
Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey 08540, USA.
The relaxation of a weakly collisional plasma, which is of fundamental interest to laboratory astrophysical plasmas, can be described by the self-consistent Boltzmann-Poisson equations with the Lenard-Bernstein collision operator. We perform a perturbative (linear and second-order) analysis of the Boltzmann-Poisson equations and obtain exact analytic solutions which resolve some longstanding controversies regarding the impact of weak collisions on the continuous spectra, the discrete Landau eigenmodes, and the decay of plasma echoes. We retain both damping and diffusion terms in the collision operator throughout our treatment.
View Article and Find Full Text PDFPhys Rev Lett
October 2024
Department of Nuclear Engineering, Seoul National University, Seoul, South Korea.
Dreicer generation is one of the main mechanisms of runaway electron generation in weakly ionized plasmas. It is often described as a diffusive flow from the Maxwellian core into high energies under the effect of the electric field. In this Letter we demonstrate a critical role of the binary nature of inelastic collisions in weakly ionized plasma during tokamak startup, where some electrons experience virtually no collisions during acceleration to the critical energy.
View Article and Find Full Text PDFMon Not R Astron Soc
November 2024
Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611, Australia.
We introduce Astrophysical Hybrid-Kinetic simulations with the flash code ([Formula: see text]) - a new Hybrid particle-in-cell (PIC) code developed within the framework of the multiphysics code flash. The new code uses a second-order accurate Boris integrator and a predictor-predictor-corrector algorithm for advancing the Hybrid-kinetic equations, using the constraint transport method to ensure that magnetic fields are divergence-free. The code supports various interpolation schemes between the particles and grid cells, with post-interpolation smoothing to reduce finite particle noise.
View Article and Find Full Text PDFRev Sci Instrum
July 2024
Department of Physics and Engineering Physics, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada.
Laser-Induced Fluorescence (LIF) spectroscopy is an essential tool for probing ion and atom velocity distribution functions (VDFs) in complex plasmas. VDFs carry information about the kinetic properties of species that is critical for plasma characterization. Accurate interpretation of these functions is challenging due to factors such as multicomponent distributions, broadening effects, and background emissions.
View Article and Find Full Text PDFPhys Rev Lett
June 2024
Dipartimento di Fisica E. Fermi, University of Pisa, Italy.
The differential heating of electrons and ions by turbulence in weakly collisional magnetized plasmas and the scales at which such energy dissipation is most effective are still debated. Using a large data sample measured in Earth's magnetosheath by the magnetospheric multiscale mission and the coarse-grained energy equations derived from the Vlasov-Maxwell system, we find evidence of a balance over two decades in scales between the energy cascade and dissipation rates. The decline of the cascade rate at kinetic scales (in contrast with a constant one in the inertial range), is balanced by an increasing ion and electron heating rates, estimated via the pressure strain.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!