Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Different kinds of cereal flours submitted to various technological treatments were classified on the basis of their mid-infrared spectra by pattern recognition techniques. Classification in the wavelet domain was achieved by using the wavelet packet transform for efficient pattern recognition (WPTER) algorithm, which allowed singling out the most discriminant spectral regions. Principal component analysis (PCA) on the selected features showed an effective clustering of the analyzed flours. Satisfactory classification models were obtained both on training and test samples. Furthermore, mixtures of varying composition of the studied flours were distributed in the PCA space according to their composition.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jf034441o | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!