Histological analysis of bone/heteroplastic implant interfaces in dog tibia.

Ann Anat

Department of Anatomy, Methodist University of São Paulo, Rua do Sacramento, 230, São Bernardo do Campo, 09640-000, SP-Brazil.

Published: February 2004

This work presents histological analysis of interfaces between bone and heteroplastic implants in dog tibias. The study was performed in four tibias (of four mongrel dogs) into which cylindrical implants were inserted. One ceramic (titania) implant and three grit-blasted titanium implants (with sandblasted and acid-corroded surfaces) were chosen for histological analysis of the implant surface/bone tissue interface. The implants remained in the tibias for eight months and none were loaded during this period. The animals were subsequently sacrificed and the samples were processed for analysis. Light microscope analysis revealed a large amount of osteoid tissue and proximity of osteoblasts and osteocytes to the implant surfaces. In addition, little or no fibrous tissue was observed between the bone and implant surfaces. The titanium implants presented better osseointegration than did the ceramic implant.

Download full-text PDF

Source
http://dx.doi.org/10.1016/S0940-9602(04)80126-2DOI Listing

Publication Analysis

Top Keywords

histological analysis
12
titanium implants
8
implant surfaces
8
implant
6
implants
5
analysis bone/heteroplastic
4
bone/heteroplastic implant
4
implant interfaces
4
interfaces dog
4
dog tibia
4

Similar Publications

Virtual biopsy for non-invasive identification of follicular lymphoma histologic transformation using radiomics-based imaging biomarker from PET/CT.

BMC Med

January 2025

Department of Nuclear Medicine, West China Hospital, Sichuan University, Guoxue Alley, Address: No.37, Chengdu City, Sichuan, 610041, China.

Background: This study aimed to construct a radiomics-based imaging biomarker for the non-invasive identification of transformed follicular lymphoma (t-FL) using PET/CT images.

Methods: A total of 784 follicular lymphoma (FL), diffuse large B-cell lymphoma, and t-FL patients from 5 independent medical centers were included. The unsupervised EMFusion method was applied to fuse PET and CT images.

View Article and Find Full Text PDF

Background & Objectives: Differentiation of histologic subtypes of appendiceal mucoceles may prove to be difficult on computed tomography (CT). The main objective of this study was to identify the CT features of mucocele of the appendix and correlate the imaging findings with histopathology in inflammatory, benign, and malignant neoplastic lesions, and whether these entities can be accurately differentiated on CT imaging.

Materials And Methods: CT scans of 31 patients with diagnosis of appendiceal mucocele were retrospectively reviewed and compared with histopathology.

View Article and Find Full Text PDF

Lower urinary tract symptoms (LUTS) significantly affect patient quality of life. Treatment options for bladder outlet obstruction (BOO) due to benign prostatic hyperplasia (BPH) (a common cause of LUTS) are insufficient to relieve discomfort. As the incidence of BPH is increasing, new pharmacological targets for LUTS treatment are required.

View Article and Find Full Text PDF

To determine the value of radiomics data extraction from baseline 18F FDG PET/CT in the prediction of tumor-infiltrating lymphocytes (TILs) among patients with primary breast cancer (BC).We retrospectively evaluated 74 patients who underwent baseline 18F FDG PET/CT scans for BC evaluation between October 2020 and April 2022. Radiomics data extraction resulted in a total of 131 radiomic features from primary tumors.

View Article and Find Full Text PDF

Simulated microgravity predisposes kidney to injury through promoting intrarenal artery remodeling.

FASEB J

January 2025

Department of Nephrology, State Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, National Clinical Research Center for Kidney Diseases, Nephrology Institute of the Chinese People's Liberation Army, Chinese PLA General Hospital, Beijing, China.

Spaceflight-induced multi-organ dysfunction affects the health of astronauts and the safety of in-orbit flight. However, the effect of microgravity on the kidney and the underlying mechanisms are unknown. In the current study, we used a hindlimb unweighting (HU) animal model to simulate microgravity and employed histological analysis, ischemia-reperfusion experiments, renal ultrasonography, bioinformatics analysis, isometric force measurement, and other molecular experimental settings to evaluate the effects of microgravity on the kidneys and the underlying mechanisms involved in this transition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!