A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Nonadiabatic electron transfer at the nanoscale tin-oxide semiconductor/aqueous solution interface. | LitMetric

Nonadiabatic electron transfer at the nanoscale tin-oxide semiconductor/aqueous solution interface.

Photochem Photobiol Sci

Department of Chemistry and Materials Research Center, Northwestern University, Evanston, IL 60208-3113, USA.

Published: March 2004

Photo-excitation of chromophoric metal complexes electrostatically adsorbed to tin-oxide semiconductor nanoparticles is often accompanied by injection of electrons from the complexes into the semiconductor conduction band. The mechanism of back electron transfer (semiconductor particle to adsorbed molecule) for a family of tris-bipyridyl ruthenium and osmium complexes has been examined by evaluating the kinetics of transfer to derivatives featuring alkyl substituents of varying length, methyl to pentyl. The substituents serve to change the electron transfer (ET) distance under conditions of weak chemical interaction with the semiconductor surface. Accompanying increases in alkyl substituent length, and therefore transfer distance, are systematic decreases in back ET rate. The decreases are indicative of nonadiabatic ET, i.e. electronic rather than nuclear control of the reaction dynamics. Further analysis points to trap-mediated transfer, rather than direct transfer from the conduction band, as the most probable back-reaction pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b313694aDOI Listing

Publication Analysis

Top Keywords

electron transfer
12
conduction band
8
transfer distance
8
transfer
7
nonadiabatic electron
4
transfer nanoscale
4
nanoscale tin-oxide
4
tin-oxide semiconductor/aqueous
4
semiconductor/aqueous solution
4
solution interface
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!