The missing link(er): a return to symmetry in antigen receptor signaling?

Mol Interv

Laboratory of Biological Chemistry, Gerontology Research Center, National Institute on Aging, National Institutes of Health, MSC-12, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA.

Published: March 2003

AI Article Synopsis

  • B lymphocytes and T lymphocytes use proteins like SLP-76 and LAT for signaling, but BLNK was initially thought to serve the same role in B cells.
  • New research has identified a protein called NTAL (or LAB) in B cells, which may have similar functions to LAT in T cells, but they aren't closely related genetically.
  • The differences between LAT and NTAL/LAB could lead to targeted therapies for modifying immune responses in clinical settings.

Article Abstract

B lymphocytes and T lymphocytes utilize several proteins with common functions to transduce signals from their respective receptors. However, at the hierarchial signalling level of SLP-76 [Src homology 2(SH2) domain-containing leukocyte protein of 76-kDa] and LAT (linker for activation of T cells) in T cells, the only corresponding protein in B cells was known to be BLNK (B cell linker protein). It was thought that perhaps BLNK performed the cognate roles of SLP-76 and LAT in B cells; however, mounting evidence to the contrary revealed that this hypothesis was not robust. Two laboratories have recently described the characterization of a protein expressed in B cells and myeloid cells, alternatively termed NTAL (non-T cell activation linker) or LAB (linker for activation of B cells). NTAL/LAB and LAT may have arisen from a primordial gene-duplicating event, but genes that code for the two proteins do not share a very high degree of sequence identity. Wange discusses the results of the two reports, the evidence for functional homology between LAT and NTAL/LAB, and the possibility that the differences between them might lead to specific clinical therapeutics to manipulate immune cell responses.

Download full-text PDF

Source
http://dx.doi.org/10.1124/mi.3.2.75DOI Listing

Publication Analysis

Top Keywords

linker activation
8
activation cells
8
cells
7
missing linker
4
linker return
4
return symmetry
4
symmetry antigen
4
antigen receptor
4
receptor signaling?
4
signaling? lymphocytes
4

Similar Publications

Mitochondrial dysfunction plays an important role in neuroinflammation and cognitive impairment in Alzheimer's disease (AD). Herein, this work designs a mitochondria-targeted micelle CsA-TK-SS-31 (CTS) to block the progression of AD by simultaneously alleviating mitochondrial dysfunction in microglia and neurons. The mitochondria-targeted peptide SS-31 drives cyclosporin A (CsA) to penetrate the blood-brain barrier (BBB) and delivers CsA to mitochondria of microglia and neurons in the brains of 5 × FAD mice.

View Article and Find Full Text PDF

An overview of matrix metalloproteinase-12 in multiple disease conditions, potential selective inhibitors, and drug designing strategies.

Eur J Med Chem

December 2024

Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India. Electronic address:

Matrix metalloproteases (MMPs) are the proteolytic enzymes accountable for extracellular matrix (ECM) modification through their Zn-dependent catalytic activity. Among these, MMP-12 is one of the crucial MMPs that contributes to various disease states including different types of cancers and other major pathophysiological conditions including COPD, asthma, emphysema, skin diseases, arthritis, vascular diseases, and neurological disorders. The majority of the MMP-12 inhibitors should have three constitutional pharmacophoric features (i.

View Article and Find Full Text PDF

Diamino variants of piperazine-based tissue transglutaminase inhibitors.

Bioorg Med Chem Lett

December 2024

Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada. Electronic address:

Tissue transglutaminase (TG2) is a multifunctional protein that can catalyze the cross-linking between proteins, and function as a G-protein. TG2's unregulated behaviour has been associated with fibrosis, celiac disease and cancer metastasis. Recently, small molecule irreversible inhibitors have been designed, bearing an electrophilic warhead that can react with the catalytic cysteine, abolishing TG2's catalytic and G-protein capabilities.

View Article and Find Full Text PDF

Structure-activity relationship of modified amphiphilic cationic cyclodextrins for enhanced siRNA delivery.

Int J Pharm

December 2024

Pharmacodelivery Group, School of Pharmacy, University College Cork, Cork T12 YN60, Ireland; Department of Haematology and Cancer Research@UCC, Cork University Hospital, University College Cork, Cork T12 XF62, Ireland. Electronic address:

The presence of multiple hydroxyl groups, at positions C2, C3 and C6 on the cyclodextrin (CD) ring structure allows for extensive functionalisation, enabling the development of biomaterials with significant potential for therapeutic siRNA delivery. To identify structural modifications that enhance activity, a range of cationic amphiphilic CDs, including both β- and γ-CDs, were synthesised, compared and evaluated. Each CDs incorporated a C lipid chain on the primary face of the CD.

View Article and Find Full Text PDF

Shedding light on imaging cancer research: Design and synthesis of 1, 8-naphthalimide-based PRMT5-targeted fluorescent ligands.

Bioorg Chem

December 2024

Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China. Electronic address:

Protein Arginine Methyltransferase 5 (PRMT5) is an important player in breast cancer cell activity, and innovative fluorescent ligands targeting this enzyme offer revolutionary, real-time insights into its role in cancer progression, unlocking new avenues for diagnosis and treatment. This study introduces fluorescence-labeled PRMT5 ligands, highlighting their applications in visualizing PRMT5, monitoring enzymatic activity as well as studying toxicity. Herein, we describe the design, synthesis, and cellular imaging of a series of fluorescent ligands that target PRMT5.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!