Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: At distinct times during embryonic development and after vascular injury, smooth muscle cells (SMCs) exhibit a highly proliferative, serum-independent growth phenotype. The aim of the present study was to evaluate the functional role of S6 ribosomal protein (S6RP) and upstream positive and negative regulators in the control of SMC serum-independent growth.
Methods And Results: We previously reported increased expression of S6RP mRNA was associated with this unique growth phenotype. Using immunohistochemistry and Western blot analysis, we report high levels of total and phospho-S6RP and increased levels of Akt and p70S6K phosphorylation, upstream positive regulators of S6RP, in rat embryonic aortas and adult balloon-injured carotid arteries compared with quiescent adult aortas and uninjured carotid arteries. Western blot analysis demonstrated that cultured embryonic and neointimal SMCs that exhibited serum-independent growth capabilities expressed high levels of S6RP and constitutively active Akt, mTOR, and p70S6K. Pharmacological and molecular inhibition of phosphatidylinositol 3-kinase (PI3K) signaling pathways, using PI3K inhibitors, rapamycin, or dominant-negative Akt adenovirus, suppressed embryonic and neointimal SMC serum-independent growth. Finally, decreased activity of PTEN, an endogenous negative regulator of PI3K signaling, was associated with high in vivo SMC growth rates, and morpholino-mediated loss of endogenous PTEN induced a serum-independent growth phenotype in cultured serum-dependent SMCs.
Conclusions: The possibility exists that cells that exhibit a distinct embryonic-like growth phenotype different from traditional SMCs are major contributors to intimal thickening. Growth of SMCs that exhibit this phenotype is dependent on constitutive Akt and mTOR/p70S6K signaling and is actively inhibited through the timed acquisition of the endogenously produced growth suppressor PTEN.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1161/01.CIR.0000118462.22970.BE | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!