Background: Systems of functional electrical stimulation (FES) have been demonstrated to enable some persons with paraplegia to stand and ambulate limited distances. However, the energy costs and acute physiologic responses associated with FES standing activities have not been well investigated.
Objective: To compare the physiologic responses of persons with paraplegia to active FES-assisted standing (AS) and frame-supported passive standing (PS).
Methods: Fifteen persons with paraplegia (T6-T11) previously habituated to FES ambulation, completed physiologic testing of PS and AS. The AS assessments were performed using a commercial FES system (Parastep-1; Altimed, Fresno, Calif); the PS tests used a commercial standing frame (Easy Stand 5000; Altimed, Fresno, Calif). Participants also performed a peak arm-cranking exercise (ACE) test using a progressive graded protocol in 3-minute stages and 10-watt power output increments to exhaustion. During all assessments, metabolic activity and heart rate (HR) were measured via open-circuit spirometry and 12-lead electrocardiography, respectively. Absolute physiologic responses to PS and AS were averaged over 1-minute periods at 5-minute intervals (5, 10, 15, 20, 25, and 30 minutes) and adjusted relative to peak values displayed during ACE to determine percentage of peak (%pk) values. Absolute and relative responses were compared between test conditions (AS and PS) and across time using two-way analysis of variance.
Results: The AS produced significantly greater values of VO2 (43%pk) than did PS (20%pk). The mean HR responses to PS (100-102 beats per minute [bpm] throughout) were significantly lower than during AS, which ranged from 108 bpm at 5 minutes to 132 bpm at test termination.
Conclusion: Standing with FES requires significantly more energy than does AS and may provide a cardiorespiratory stress sufficient to meet minimal requirements for exercise conditioning.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10790268.2003.11753710 | DOI Listing |
Respir Res
December 2024
National Jewish Health, Denver, USA.
Background: We sought consensus among practising respiratory physicians on the prediction, identification and monitoring of progression in patients with fibrosing interstitial lung disease (ILD) using a modified Delphi process.
Methods: Following a literature review, statements on the prediction, identification and monitoring of progression of ILD were developed by a panel of physicians with specialist expertise. Practising respiratory physicians were sent a survey asking them to indicate their level of agreement with these statements on a binary scale or 7-point Likert scale (- 3 to 3), or to select answers from a list.
Vet Anaesth Analg
December 2024
Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA, USA.
Objective: To characterize the anesthetic effects of dexmedetomidine, vatinoxan and ketamine combinations in cats.
Study Design: Randomized crossover experimental study.
Animals: A group of seven healthy male neutered cats, with body mass 5.
J Neurosci
December 2024
Neurobiology Laboratory, National Institute of Environmental Health Sciences, Division of Intramural Research, National Institute of Health, Research Triangle Park, North Carolina 27713, USA
Perineuronal nets (PNNs) are a specialized extracellular matrix that surround certain populations of neurons, including (inhibitory) parvalbumin (PV) expressing-interneurons throughout the brain and (excitatory) CA2 pyramidal neurons in hippocampus. PNNs are thought to regulate synaptic plasticity by stabilizing synapses and as such, could regulate learning and memory. Most often, PNN functions are queried using enzymatic degradation with chondroitinase, but that approach does not differentiate PNNs on CA2 neurons from those on adjacent PV cells.
View Article and Find Full Text PDFBiochim Biophys Acta Gen Subj
December 2024
Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India. Electronic address:
The abiotic stress tolerance mechanism in plants is regulated by multiple physiological, biochemical, and molecular processes; hence, omics approaches to underpin these mechanisms are essential. It is clear that transcription factors (TFs) are one of the fundamental molecular switches that play a crucial role in modulating, regulating, and orchestrating plants in response to various climatic vagaries. Several reports are available now, focusing on understanding the roles of TFs, including those in Poaceae family in regulating different biological processes and stress responses.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
December 2024
Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
Hydrogen peroxide (HO), as a strong oxidant, is crucial for the aerobic metabolism of organisms and is intricately linked to the onset of numerous diseases. Real-time monitor HO levels in the environment and biological microenvironment is of paramount importance for environment protection and elucidating HO-related physiological and pathological processes. In this study, a novel near-infrared fluorescence imaging platform was developed and a near-infrared fluorescent probe FBMH was constructed based on the platform with photoinduced electron transfer mechanism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!