Background: P-glycoprotein (P-gp) is commonly associated with multi-drug resistance (MDR) in cancer cells and the efflux of a broad spectrum of chemicals from the cell, including many chemotherapeutics and certain steroid hormones. The impact of P-gp and mechanisms involved in androgen transport and cellular accumulation within normal and malignant prostate cells remains unclear.

Methods: Following incubation of LNCaP, PC-3, HeLa, and HeLa FLAG-androgen receptor (AR) cells with (3)H-dihydrotestosterone (DHT) alone and in combination with P-gp inhibitors, PSC-833 and verapamil, we examined the cellular accumulation and efflux of androgens, as well as gene transcriptional response.

Results: Our data reveal that the cellular transport and accumulation of DHT is dependent on the expression of functional AR and modulated by P-gp. P-gp over-expression by both transient transfection and aspirin treatment in LNCaP cells showed decreased intracellular DHT accumulation, further suggesting DHT efflux is P-gp regulated.

Conclusions: Androgen responsiveness may be modulated by P-gp in prostate cancer cells. The biological consequences of increased P-gp expression are decreased androgen accumulation and a corresponding decrease in androgen-regulated transcriptional activity and PSA gene expression.

Download full-text PDF

Source
http://dx.doi.org/10.1002/pros.10354DOI Listing

Publication Analysis

Top Keywords

p-gp
8
cancer cells
8
cellular accumulation
8
modulated p-gp
8
cells
6
androgen
5
accumulation
5
p-glycoprotein increases
4
efflux
4
increases efflux
4

Similar Publications

Background: Doxorubicin (DOX) is a potent chemotherapeutic agent for breast cancer, but its effectiveness is often diminished by resistance mechanisms, particularly through p-glycoprotein (P-gp) mediated drug efflux. Clarithromycin (CAM), a macrolide antibiotic, inhibits multiple metabolic pathways including CYP3A and P-gp, potentially countering DOX resistance.

Objective: This study aimed to evaluate the potentiation of DOX and its effectiveness against the MCF-7 breast cancer cell line by encapsulating both DOX and CAM in PEGylated liposomes.

View Article and Find Full Text PDF

Human organotypic colon in vitro microtissue: unveiling a new window into colonic drug disposition.

Eur J Pharm Sci

January 2025

Preclinical Sciences & Translational Safety, Janssen R&D, Turnhoutseweg 30, 2340, Beerse, Belgium. Electronic address:

The purpose of this study was to evaluate EpiColon, a novel human organotypic 3D colon microtissue prototype, developed to assess colonic drug disposition, with a particular focus on permeability ranking, and compare its performance to Caco-2 monolayers. EpiColon was characterized for barrier function using transepithelial electrical resistance (TEER), morphology via histology and immunohistochemistry, and functionality through drug transport studies measuring apparent permeability (P). Cutoff thresholds for the permeability of FITC-dextran 4 kDa (FD4), FITC-dextran 10 kDa (FD10S), and [C]mannitol were established to monitor microtissue integrity.

View Article and Find Full Text PDF

A promising future for breast cancer therapy with hydroxamic acid-based histone deacetylase inhibitors.

Bioorg Chem

January 2025

Department of In Vitro Carcinogenesis and Cellular Chemotherapy, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026, India. Electronic address:

Histone deacetylases (HDACs) play a critical role in chromatin remodelling and modulating the activity of various histone proteins. Aberrant HDAC functions has been related to the progression of breast cancer (BC), making HDAC inhibitors (HDACi) promising small-molecule therapeutics for its treatment. Hydroxamic acid (HA) is a significant pharmacophore due to its strong metal-chelating ability, HDAC inhibition properties, MMP inhibition abilities, and more.

View Article and Find Full Text PDF

Development and validation of a high-performance liquid chromatography method with fluorescence detection for the quantification of the resistance protein P-gp in cancer cells.

J Chromatogr B Analyt Technol Biomed Life Sci

January 2025

Université Clermont Auvergne, Institut Universitaire de Technologie, UMR INSERM-UCA, U1240, Imagerie Moléculaire et Stratégies Théranostiques (IMoST), 5 Avenue Blaise Pascal, 63000 Clermont-Ferrand, France.

A method using high-performance liquid chromatography coupled with fluorescence detection (HPLC-FLD) was developed and validated to quantify the innovative tool LightSpot®-FL-1, a selective permeability-glycoprotein (P-gp)-targeted fluorescent conjugate used to measure P-gp expression in cell samples. Quantifying P-gp is a major challenge in oncology as its overexpression in many cancer cells results in Multidrug Resistance (MDR) associated with chemotherapy failure. To develop the method reported herein, both sample preparation and analysis parameters were investigated.

View Article and Find Full Text PDF

The blood-brain barrier (BBB) is selectively permeable, but it also poses significant challenges for treating CNS diseases. Low-intensity focused ultrasound (LiFUS), paired with microbubbles is a promising, non-invasive technique for transiently opening the BBB, allowing enhanced drug delivery to the central nervous system (CNS). However, the downstream physiological effects following BBB opening, particularly secondary responses, are not well understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!