A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Glucose deprivation increases hydrogen peroxide level in immunostimulated rat primary astrocytes. | LitMetric

Activated astrocytes produce a large amount of bioactive molecules, including reactive oxygen and nitrogen species. Astrocytes are in general resistant to those reactive species. However, we previously reported that immunostimulated astrocytes became highly vulnerable to metabolic insults, such as glucose deprivation. In this study, we investigated whether H(2)O(2) production was associated with the increased vulnerability. Glucose deprivation for up to 8 hr did not change the intracellular level of H(2)O(2) in astrocytes. Treatment with lipopolysaccharide plus interferon-gamma for 48 hr evoked astroglial H(2)O(2) production; however, no apparent death or injury was observed in immunostimulated astrocytes. Glucose deprivation after 48 hr of immunostimulation markedly increased H(2)O(2) level, depleted adenosine triphosphate (ATP), and enhanced lactate dehydrogenase (LDH) release. The ATP depletion and LDH release were in part prevented by catalase, mannitol, and N-acetyl-L-cysteine. The enhanced level of H(2)O(2) in glucose-deprived immunostimulated astrocytes appeared to be secondary to the depletion of reduced glutathione. 4-(2-Aminoethyl)bebzenesulfonyl fluoride (AEBSF), an inhibitor of NADPH oxidase, reduced H(2)O(2) level and LDH release in glucose-deprived immunostimulated astrocytes. H(2)O(2), either endogenously produced or exogenously added, depolarized mitochondrial transmembrane potential in glucose-deprived astrocytes, leading to their ATP depletion and death. The present results strongly indicate that glucose deprivation causes deterioration of immunostimulated astrocytes by increasing the intracellular concentration of H(2)O(2).

Download full-text PDF

Source
http://dx.doi.org/10.1002/jnr.20009DOI Listing

Publication Analysis

Top Keywords

glucose deprivation
20
immunostimulated astrocytes
20
ldh release
12
astrocytes
10
h2o2
8
h2o2 production
8
level h2o2
8
h2o2 level
8
atp depletion
8
glucose-deprived immunostimulated
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!