In the physiological form, the prion protein is a glycoprotein tethered to the cell surface via a C-terminal glycosylphosphatidylinositol anchor, consisting of a largely alpha-helical globular C-terminal domain and an unstructured N-terminal portion. This unstructured part of the protein contains four successive octapeptide repeats, which were shown to bind up to four Cu(2+) ions in a cooperative manner. To mimic the location of the protein on the cell membrane and to analyze possible structuring effects of the lipid/water interface, the conformational preferences of a single octapeptide repeat and its tetrameric form, as well of the fragment 92-113, proposed as an additional copper binding site, were comparatively analyzed in aqueous and dodecylphosphocholine micellar solution as a membrane mimetic. While for the downstream fragment 92-113 no conformational effects were detectable in the presence of DPC micelles by CD and NMR, both the single octapeptide repeat and, in an even more pronounced manner, its tetrameric form are restricted into well-defined conformations. Because of the repetitive character of the rigid structural subdomain in the tetrarepeat molecule, the spatial arrangement of these identical motifs could not be resolved by NMR analysis. However, the polyvalent nature of the repetitive subunits leads to a remarkably enhanced interaction with the micelles, which is not detectably affected by copper complexation. These results strongly suggest interactions of the cellular form of PrP (PrP(c)) N-terminal tail with the cell membrane surface at least in the octapeptide repeat region with preorganization of these sequence portions for copper complexation. There are sufficient experimental facts known that support a physiological role of copper complexation by the octapeptide repeat region of PrP(c) such as a copper-buffering role of the PrP(c) protein on the extracellular surface.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bip.20015 | DOI Listing |
Phys Chem Chem Phys
October 2024
Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA.
Transmissible spongiform encephalopathies (or prion diseases) such as Creutzfeldt-Jacob disease, mad cow disease, and scrapie are characterized by accumulation in the brain of misfolded prion protein aggregates (PrP) that have properties of amyloid fibrils. Given that transition metal ions, such as copper and zinc, appear to be important for physiological functions of cellular PrP (PrP) as well as for prion disease pathogenesis, exploring their role in the protein aggregation process is of considerable interest. Copper(II) in particular is well-known to bind to the four tandem octapeptide repeats (PHGGGWGQ) located in the N-terminal region of PrP (human PrP amino acids 60-91), as well as to additional histidine binding sites outside the octarepeat region with distinct binding modes depending on Cu concentration.
View Article and Find Full Text PDFJ Eukaryot Microbiol
November 2024
Department of Parasitology, Tokai University School of Medicine, Isehara, Kanagawa, Japan.
Entamoeba nuttalli is genetically the closest to Entamoeba histolytica, the causative agent of human amebiasis. E. nuttalli is found in Macaca species, exhibiting no symptoms while potentially virulent.
View Article and Find Full Text PDFVet Res
August 2024
Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald, Isle of Riems, Germany.
The structure of cellular prion proteins encoded by the prion protein gene (PRNP) impacts susceptibility to transmissible spongiform encephalopathies, including chronic wasting disease (CWD) in deer. The recent emergence of CWD in Northern European reindeer (Rangifer tarandus), moose (Alces alces alces) and red deer (Cervus elaphus), in parallel with the outbreak in North America, gives reason to investigate PRNP variation in European deer, to implement risk assessments and adjust CWD management for deer populations under threat. We here report PRNP-sequence data from 911 samples of German red, roe (Capreolus capreolus), sika (Cervus nippon) and fallow deer (Dama dama) as well as additional data from 26 Danish red deer close to the German border and four zoo species not native to Germany.
View Article and Find Full Text PDFBiochem Biophys Res Commun
November 2024
Department of Parasitology, Tokai University School of Medicine, Isehara, Japan. Electronic address:
Entamoeba nuttalli is genetically the closest to Entamoeba histolytica, the causative agent of human amebiasis, and its natural host is Macaca species. A unique E. nuttalli specific surface protein (PTORS) containing 42 repeats of octapeptide was identified by comparative genomic analysis of Entamoeba species.
View Article and Find Full Text PDFSci Adv
August 2024
Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA.
Host range specificity is a prominent feature of the legume-rhizobial symbiosis. and are two closely related species that engage in root nodule symbiosis with legume plants of the genus, but certain species exhibit selectivity in their interactions with the two rhizobial species. We have identified a receptor-like kinase, which can discriminate between the two bacterial species, acting as a genetic barrier against infection by most strains.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!