Airborne particles of nuclear fuel from the Chernobyl reactor that had been collected on air filters and stored, were characterised using in vitro dissolution tests to assess effective doses after their inhalation. As solvent, the Gamble biological fluid was used to simulate lung fluid. The solubility of the measured radionuclides decreased in the order (137)Cs>(90)Sr>>(241)Am>or=(239+240)Pu in the simulated lung fluid. The dissolution rate constant of e.g. (239+249)Pu ranged from 0.72 to 5.4 x 10(-6) g x cm(-2) d(-1) and decreased (for all nuclides) with increasing particle size as predicted from theoretical considerations. Considering the inhalation dose, decreasing dose with size and increasing doses with lower solubility may partly counterbalance each other for (137)Cs and (90)Sr. On the other hand, for (239)Pu and (241)Am larger particles and associated lower solubility both change the resulting dose in the same direction towards lower values. The comparison of the experimentally determined dose coefficients with ICRP values indicates that nuclear fuel particles closely resemble type M material characteristics for (137)Cs and (90)Sr and type S material characteristics for (239)Pu and (241)Am.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00411-004-0226-yDOI Listing

Publication Analysis

Top Keywords

fuel particles
8
chernobyl reactor
8
nuclear fuel
8
lung fluid
8
lower solubility
8
137cs 90sr
8
239pu 241am
8
type material
8
material characteristics
8
dose
5

Similar Publications

Safe storage of fresh and irradiated fuel is ensured by solving the problem of photon emission protection. The neutron component is usually not taken into account due to its low intensity. However, for the new VVER-1200 fuel, the neutron component consideration is a mandatory procedure for radiation safety.

View Article and Find Full Text PDF

Designing transition metal oxide (TMO)/porous carbon composite materials for the oxygen reduction reaction (ORR) is a promising strategy in high-performance fuel cell technology. In this study, we used the isolation effect and pore-creating properties of Zn2+ to fabricate a composite material comprising ultrasmall Fe3O4 particles anchored on hierarchically N-doped porous carbon nanospheres. This material, referred to as CPZ1.

View Article and Find Full Text PDF

The depletion of fossil fuel reserves, increasing environmental concerns, and energy demands of remote communities have increased the acceptance of using hybrid renewable energy systems (HRES). However, choosing an optimal HRES from economic, environmental, reliability, and sustainability aspects is still challenging. To solve this challenge, this study introduces a novel multi-objective optimization approach using the Gravitational Search Algorithm (GSA) and non-dominated sorting techniques.

View Article and Find Full Text PDF

Pt-based intermetallic alloy particles with a Pt skin layer have higher catalytic activity than solid-solution alloy particles and have attracted considerable attention for practical applications in polymer electrolyte fuel cells. However, the reason for the superior performance of intermetallic alloys is not yet fully understood. Because the catalytic reaction proceeds on the topmost surface of the particle, it is necessary to clarify the relationship between the periodic structure of the intermetallic alloy and the Pt atomic coordination on the surface.

View Article and Find Full Text PDF

Cocombustion with biomass tar is a potential method for NO reduction during fossil fuel combustion. In this work, the molecular dynamic method based on the reactive force field was used to study the NO reduction by phenol, which is a typical tar model compound. Results indicate that phenol undergoes significant decomposition at 3000 K, resulting in the formation of small molecular fragments accompanied by the generation of large molecular, network-structured soot particles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!