The high pathogenicity of Lassa virus is assumed to involve resistance to the effects of interferon (IFN). We have analyzed the effects of alpha IFN (IFN-alpha), IFN-gamma, and tumor necrosis factor alpha (TNF-alpha) on replication of Lassa virus compared to the related, but less pathogenic, lymphocytic choriomeningitis virus (LCMV). Three low-passage Lassa virus strains (AV, NL, and CSF), isolated from humans with mild to fulminant Lassa fever, were tested. Lassa virus replication was inhibited by IFN-alpha and IFN-gamma, but not TNF-alpha, in Huh7 and Vero cells. The degree of IFN sensitivity of a Lassa virus isolate did not correlate with disease severity in human patients. Furthermore, cytokine effects observed for Lassa virus and LCMV (strains CH-5692, Armstrong, and WE) were similar. To address the mechanisms involved in the IFN effect, we used cell lines in which overexpression of IFN-stimulated proteins promyelocytic leukemia protein (PML) and Sp100 could be induced. Both proteins reside in PML bodies, a cellular target of the LCMV and Lassa virus Z proteins. Overexpression of PML or Sp100 did not affect replication of either virus. This, together with the previous finding that PML knockout facilitates LCMV replication in vitro and in vivo (M. Djavani, J. Rodas, I. S. Lukashevich, D. Horejsh, P. P. Pandolfi, K. L. Borden, and M. S. Salvato, J. Virol. 75:6204-6208, 2001; W. V. Bonilla, D. D. Pinschewer, P. Klenerman, V. Rousson, M. Gaboli, P. P. Pandolfi, R. M. Zinkernagel, M. S. Salvato, and H. Hengartner, J. Virol. 76:3810-3818, 2002), describes PML as a mediator within the antiviral pathway rather than as a direct effector protein. In conclusion, the high pathogenicity of Lassa virus compared to LCMV is probably not due to increased resistance to the effects of IFN-alpha or IFN-gamma. Both cytokines inhibit replication which is relevant for the design of antiviral strategies against Lassa fever with the aim of enhancing the IFN response.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC353741PMC
http://dx.doi.org/10.1128/jvi.78.6.3162-3169.2004DOI Listing

Publication Analysis

Top Keywords

lassa virus
36
ifn-alpha ifn-gamma
12
virus
11
lassa
10
virus strains
8
high pathogenicity
8
pathogenicity lassa
8
resistance effects
8
virus compared
8
virus lcmv
8

Similar Publications

Analysis of Synonymous Codon Usage bias of Lassa virus.

Virus Res

January 2025

Medical Big Data Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province 510080, China. Electronic address:

Lassa virus genome consists of two single-stranded, negative-sense RNA segments that lie in the genus Arenavirus. The disease associated with the Lassa virus is distributed all over the world, with approximately 3,000,000-5,000,000 infections diagnosed annually in West Africa. It shows high health risks to the human being.

View Article and Find Full Text PDF

The SARS-CoV-2 pandemic has highlighted the need for society, as a whole, to be prepared against potential pandemics caused by a variety of different viral families of concern. Here, we describe a roadmap towards the identification and validation of conserved T cell epitope regions from Viral Families of Pandemic Potential (VFPP). For each viral family, we select a prototype virus, the sequence of which could be utilized in epitope identification screens.

View Article and Find Full Text PDF

Current perspectives on vaccines and therapeutics for Lassa Fever.

Virol J

December 2024

Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada.

Lassa virus, the cause of deadly Lassa fever, is endemic in West Africa, where thousands of cases occur on an annual basis. Nigeria continues to report increasingly severe outbreaks of Lassa Fever each year and there are currently no approved vaccines or therapeutics for the prevention or treatment of Lassa Fever. Given the high burden of disease coupled with the potential for further escalation due to climate change the WHO has listed Lassa virus as a priority pathogen with the potential to cause widespread outbreaks.

View Article and Find Full Text PDF

Systematic Review and Meta-Analysis of Female Reproductive Health Following Ebola Virus Disease.

Am J Trop Med Hyg

December 2024

Department of Medicine, Section of Infectious Diseases, School of Medicine, Tulane University, New Orleans, Louisiana.

Article Synopsis
  • The systematic review focuses on reproductive health issues faced by female survivors of Lassa fever and Ebola virus disease.
  • Thirteen studies reviewed predominantly highlight negative outcomes related to reproductive health among EVD survivors, including menstrual irregularities and pregnancy loss, with no research identified on LF survivors.
  • The analysis indicates that about 14% of female EVD survivors experience adverse reproductive health outcomes, revealing a significant need for further research in this area.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!