In peach trees (Prunus persica L. Batsch cv. Redhaven), sorbitol is a primary photosynthetic product and may play an important role in the budbreak process. Surprisingly, before budbreak (from January to early March), the concentration of sorbitol in the xylem sap decreases, while that of hexoses (glucose and fructose) increases. The aim of this work was to study the control of sorbitol uptake into vegetative buds by hexoses. Sorbitol uptake was selectively inhibited by hexoses at low and physiological concentrations and this effect was both reversible and concentration-dependent. In addition, the active uptake of sorbitol significantly declined in the plasma membrane vesicles-enriched fraction purified from glucose-treated vegetative buds, suggesting that the inhibitory action of glucose was at the membrane level. Finally, among several glucose analogues tested, only hexokinase substrates (2-deoxyglucose and mannose) were able to mimic the glucose effect, which was completely blocked by the hexokinase inhibitor mannoheptulose. These results represent the first steps towards a better understanding of polyol transport control in plants.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jxb/erh087DOI Listing

Publication Analysis

Top Keywords

sorbitol uptake
12
vegetative buds
8
sorbitol
6
glucose
5
uptake regulated
4
regulated glucose
4
glucose hexokinase
4
hexokinase pathway
4
pathway vegetative
4
vegetative peach-tree
4

Similar Publications

Dual-Mechanism mRNA Delivery via Fluorinated-Sorbitol Polyplexes: Enhancing Cellular Uptake and Endosomal Escape for COVID-19 Vaccination.

Adv Healthc Mater

December 2024

Department of Biomedical Sciences, Biomedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, 322 Seoyang-ro, Hwasun, 58128, Republic of Korea.

Advancements in mRNA delivery nanoparticles have significantly improved the potential for treating challenging diseases. Due to the inherent immunogenicity and rapid degradation of mRNA, specialized nanoparticles are required for efficient intracellular uptake, endosomal escape, and protection from lysosomal degradation. Although current methods enable transgene expression but achieving a balance between efficiency and toxicity remains challenging.

View Article and Find Full Text PDF

Development of a diagnostic and drug evaluation system for acute inflammation using a novel [Zr]DTPA-sorbitol probe.

J Mater Chem B

January 2025

Department of Veterinary Public Health, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea.

Non-invasive imaging techniques employing biomarkers with high selectivity for inflammation are essential not only for the early diagnosis and prevention of chronic inflammatory diseases but also for guiding appropriate drug therapy and enabling real-time evaluation of anti-inflammatory drug efficacy. In this study, we conjugated radioactive zirconium to sorbitol, a compound that can selectively target inflammation, and evaluated its inflammation-specific uptake and potential for assessing anti-inflammatory treatment efficacy in a mouse inflammation model. Pharmacokinetic analysis demonstrated that radiolabeled sorbitol achieved maximal uptake in inflamed tissues within 1 h.

View Article and Find Full Text PDF

Antibiotic tolerance due to restriction of cAMP-Crp regulation by mannitol, a non-glucose-family PTS carbon source.

mSphere

December 2024

State Key Laboratory of Vaccines for Infectious Diseases, Xiang-An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province, China.

Article Synopsis
  • - The study reveals that Enzyme-IIA (EIIA) links glucose sugar uptake with a regulatory system affecting antibiotic resistance, where phosphorylated EIIA increases cAMP-Crp activity, leading to cell death through reactive oxygen species (ROS) accumulation.
  • - Mannitol, unlike other sugars that require EIIA for uptake, has been shown to reduce the effectiveness of antibiotics without changing their minimum inhibitory concentration, indicating it promotes antibiotic tolerance by inhibiting cAMP-Crp action.
  • - This research highlights that other non-glucose carbon sources like mannose and sorbitol can also induce similar antibiotic tolerance through a mechanism that lowers ROS activity, posing challenges for effective infection treatment.
View Article and Find Full Text PDF

Melatonin mitigates root growth inhibition and carbon-nitrogen metabolism imbalance in apple rootstock M9T337 under high nitrogen stress.

Front Plant Sci

October 2024

Apple Technology Innovation Center of Shandong Province, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production of Shandong Province, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China.

Article Synopsis
  • Nitrogen (N) is crucial for plant development, but excessive N fertilization in apple production can lead to high N stress, impacting roots.
  • A study on the apple rootstock M9T337 showed that increasing melatonin levels under high N stress improved root and leaf growth by 11.38% and 28.01%, respectively, and supported better root development.
  • Melatonin enhanced antioxidant enzyme activity, protected root structure, improved transport and utilization of sugars, and increased nitrate absorption, which could help balance nitrogen application and optimize plant health.
View Article and Find Full Text PDF

Sugar alcohol degradation in Archaea: uptake and degradation of mannitol and sorbitol in Haloarcula hispanica.

Extremophiles

October 2024

Institut Für Allgemeine Mikrobiologie, Christian-Albrechts-Universität Kiel, Am Botanischen Garten 1-9, 24118, Kiel, Germany.

The halophilic archaeon Haloarcula hispanica utilizes the sugar alcohols mannitol and sorbitol as carbon and energy sources. Genes, enzymes, and transcriptional regulators involved in uptake and degradation of these sugar alcohols were identified by growth experiments with deletion mutants and enzyme characterization. It is shown that both mannitol and sorbitol are taken up via a single ABC transporter of the CUT1 transporter family.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!