c-Myc plays an essential role in proliferation, differentiation, and apoptosis. Because of its relevance to cancer, most studies have focused on the cellular consequences of c-Myc overexpression. Here, we address the role of physiological levels of c-Myc in drug-induced apoptosis. By using c-MYC null cells we confirm and extend recent reports showing a c-Myc requirement for the induction of apoptosis by a number of anticancer agents. In particular, we show that c-Myc is required for the induction of apoptosis by doxorubicin and etoposide, whereas it is not required for camptothecin-induced cell death. We have investigated the molecular mechanisms involved in executing doxorubicin-induced apoptosis and show caspase-3 activation by both mitochondria-dependent and -independent pathways. Moreover, serine proteases participate in doxorubicin-induced apoptosis partly by contributing to caspase-3 activation. Finally, a complete rescue from doxorubicin-induced apoptosis is obtained only when serine proteases, caspase-3, and mitochondrial activation are inhibited simultaneously. Interestingly, doxorubicin requires c-Myc for the activation of all of these pathways. Our findings therefore support a model in which doxorubicin simultaneously triggers multiple c-Myc-dependent apoptosis pathways.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M313532200DOI Listing

Publication Analysis

Top Keywords

doxorubicin-induced apoptosis
16
apoptosis
9
induction apoptosis
8
caspase-3 activation
8
serine proteases
8
c-myc
7
activation
5
loss myc
4
myc confers
4
confers resistance
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!