Forebrain specialization and the olfactory system in anseriform birds. An architectonic and tracing study.

Cell Tissue Res

Institut für Zoologie, Tierärztliche Hochschule Hannover, Federal Republic of Germany.

Published: April 1992

In anseriform birds the mediodorsal part of the rostral forebrain is covered by a corticoid (= layered) structure, establishing a unique feature of this avian group since in other birds the non-cortical accessory or dorsal hyperstriatum occupies the corresponding surface area of the hemisphere. The efferents of the olfactory bulb are shown to reach this region, which thus can be identified as a heavily enlarged retrobulbar area. The large expansion of this olfactory representation may indicate an important biological function. In comparison to the mammalian olfactory system the three stratified olfactory projection centers of birds should be regarded as retrobulbar, prepiriform and periamygdalar regions.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF00338056DOI Listing

Publication Analysis

Top Keywords

olfactory system
8
anseriform birds
8
olfactory
5
forebrain specialization
4
specialization olfactory
4
system anseriform
4
birds
4
birds architectonic
4
architectonic tracing
4
tracing study
4

Similar Publications

Effects of Atmospheric Pollutants on Volatile-Mediated Insect Ecosystem Services.

Glob Chang Biol

January 2025

Department of Environmental and Biological Sciences, Faculty of Science, Forestry and Technology, University of Eastern Finland, Kuopio, Finland.

Primary and secondary atmospheric pollutants, including carbon monoxide (CO), carbon dioxide (CO), nitrogen oxides (NO), ozone (O), sulphur dioxide (SO) and particulate matter (PM/PM) with associated heavy metals (HMs) and micro- and nanoplastics (MPs/NPs), have the potential to influence and alter interspecific interactions involving insects that are responsible for providing essential ecosystem services (ESs). Given that insects rely on olfactory cues for vital processes such as locating mates, food sources and oviposition sites, volatile organic compounds (VOCs) are of paramount importance in interactions involving insects. While gaseous pollutants reduce the lifespan of individual compounds that act as olfactory cues, gaseous and particulate pollutants can alter their biosynthesis and emission and exert a direct effect on the olfactory system of insects.

View Article and Find Full Text PDF

Optofluidic paper-based analytical device for discriminative detection of organic substances via digital color coding.

Microsyst Nanoeng

January 2025

Department of Chemical and Biomolecular Engineering, Chonnam National University, 50 Daehak-ro, Yeosu-si, Jeollanam-do, 59626, Republic of Korea.

Developing a portable yet affordable method for the discrimination of chemical substances with good sensitivity and selectivity is essential for on-site visual detection of unknown substances. Herein, we propose an optofluidic paper-based analytical device (PAD) that consists of a macromolecule-driven flow (MDF) gate and photonic crystal (PhC) coding units, enabling portable and scalable detection and discrimination of various organic chemical, mimicking the olfactory system. The MDF gate is designed for precise flow control of liquid analytes, which depends on intermolecular interactions between the polymer at the MDF gate and the liquid analytes.

View Article and Find Full Text PDF

As in other animals, insects can modulate their odor-guided behaviors, especially sexual behavior, according to environmental and physiological factors such as the individual's nutritional state. This behavioral flexibility results from modifications of the olfactory pathways under the control of hormones. Most studies have focused on the central modulation of the olfactory system and less attention has been paid to the peripheral olfactory system.

View Article and Find Full Text PDF

Choroid plexus-targeted viral gene therapy for alpha-mannosidosis, a prototypical neurometabolic lysosomal storage disease.

Hum Mol Genet

January 2025

Section on Translational Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA.

The choroid plexuses (CP) are highly vascularized structures that project into the ventricles of the vertebrate brain. The polarized epithelia of the CP produce cerebrospinal fluid by transporting water and ions into the ventricles from the blood and normally secrete a large number of proteins. We assessed the feasibility of selective CP transduction with recombinant adeno-associated virus (rAAV) gene therapy vectors for treatment of lysosomal storage disease (LSD), a broad category of neurometabolic illness associated with significant burdens to affected patients and their families.

View Article and Find Full Text PDF

The expansion and loss of specific olfactory genes in relatives of parasitic lice, the stored-product psocids (Psocodea: Liposcelididae).

BMC Genomics

January 2025

Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400715, China.

Background: Booklice, belonging to the genus Liposcelis (Psocodea: Liposcelididae), commonly known as psocids, infest a wide range of stored products and are implicated in the transmission of harmful microorganisms such as fungi and bacteria. The olfactory system is critical for insect feeding and reproduction. Elucidating the molecular mechanisms of the olfactory system in booklice is crucial for developing effective control strategies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!