Protein thermal aggregation involves distinct regions: sequential events in the heat-induced unfolding and aggregation of hemoglobin.

Biophys J

Department of Biological Sciences and Biotechnology, State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua University, Beijing 100084, China.

Published: March 2004

Protein thermal aggregation plays a crucial role in protein science and engineering. Despite its biological importance, little is known about the mechanism and pathway(s) involved in the formation of aggregates. In this report, the sequential events occurring during thermal unfolding and aggregation process of hemoglobin were studied by two-dimensional infrared correlation spectroscopy. Analysis of the infrared spectra recorded at different temperatures suggested that hemoglobin denatured by a two-stage thermal transition. At the initial structural perturbation stage (30-44 degrees C), the fast red shift of the band from alpha-helix indicated that the native helical structures became more and more solvent-exposed as temperature increased. At the thermal unfolding stage (44-54 degrees C), the unfolding of solvent-exposed helical structures dominated the transition and was supposed to be responsible to the start of aggregation. At the thermal aggregation stage (54-70 degrees C), the transition was dominated by the formation of aggregates and the further unfolding of the buried structures. A close inspection of the sequential events occurring at different stages suggested that protein thermal aggregation involves distinct regions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1304004PMC
http://dx.doi.org/10.1016/S0006-3495(04)74237-XDOI Listing

Publication Analysis

Top Keywords

thermal aggregation
16
protein thermal
12
sequential events
12
aggregation involves
8
involves distinct
8
distinct regions
8
unfolding aggregation
8
formation aggregates
8
events occurring
8
thermal unfolding
8

Similar Publications

Time-dependent afterglow colored (TDAC) behavior differs from static afterglow by involving wavelength changes, enabling low-cost, high-level encryption and anti-counterfeiting. However, the existing carbon dot (CD)-based TDAC materials lack a clear mechanistic explanation and controllable wavelength changes, significantly hindering the progress of practical applications in this field. In this study, we synthesized CDs composites with customizable tunable TDAC wavelengths across the visible region.

View Article and Find Full Text PDF

In the face of escalating environmental challenges such as fossil fuel dependence and water pollution, innovative solutions are essential for sustainable development. In this regard, zeolitic imidazolate frameworks (ZIFs), specifically ZIF-8, act as promising photocatalysts for environmental remediation and renewable energy applications. ZIF-8, a subclass of metal-organic frameworks (MOFs), is renowned for its large specific surface area, high porosity, rapid electron transfer ability, abundant functionalities, ease of designing, controllable properties, and remarkable chemical and thermal stability.

View Article and Find Full Text PDF

LiOH Additive Triggering Beneficial Aging Effect of SnO Nanocrystal Colloids for Efficient Wide-Bandgap Perovskite Solar Cells.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Wide-Bandgap Semiconductor Devices and Integrated Technology, Xidian University, Xi'an 710071, PR China.

Commercial SnO nanocrystals used for producing electron transporting layers (ETLs) of perovskite solar cells (PSC) are prone to aggregation at room temperature and contain many structural defects. Herein, we report that the LiOH additive can simultaneously delay the aggregation and donate the beneficial aging effect to SnO nanocrystals. The resulting SnO ETLs show the desired characteristics, including a broadened absorption range, reduced defects, improved transporting properties, and decreased work function.

View Article and Find Full Text PDF

A self-aggregated thermally activated delayed fluorescence nanoprobe for HClO imaging and activatable photodynamic therapy.

Talanta

January 2025

Key Laboratory for Advanced Materials, Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, PR China. Electronic address:

Hypochlorous acid (HClO/ClO) is a common ROS that exhibits elevated activity levels in cancer cells. In this study, an ClO-triggered TADF probe, PTZ-MNI, was designed based on a naphthalimide core. PTZ-MNI self-assemble in aqueous environments, exhibiting significantly enhanced fluorescence that demonstrated typical aggregation-induced delayed fluorescence (AIDF) characteristics.

View Article and Find Full Text PDF

A green methodology for the synthesis of carbon quantum dots (CQDs) from coffee husk without the use of any toxic solvents is proposed in this work. Sonochemical exfoliation of biochar, obtained from the thermal carbonization of coffee husk (from a certified coffee seeds) at low temperature in an air-restricted atmosphere, is described as an alternative procedure for the sustainable production of CQDs. The synthesized CQDs exhibited blue fluorescence with a strong maximum emission band at 410 nm when excited at a maximum absorption wavelength of 330 nm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!