Objective: To study the effects of sodium arsenite on gene expression related to growth and development and explored the molecular mechanism of arsenic effects using gene chips.

Methods: Normal human hepatic cells were dripped on chips and then hybrided with the first strand of cDNA from hepatic cell exposed to different concentration of sodium arsenite. Gene sequence of clone differently expressed was determined and then defined which gene it was and finally those genes which associated with growth and development were identified.

Results: The p55 gene expression level of two experimental groups was severaly 2.21 and 2.93 times as the control group. The PL gene level of two experimental groups were 0.13 and 0.27 times as the control group, and the HOXA10 gene level was 0.22 and 0.35 times of the control group. These results indicated that sodium arsenite increase p55 gene expression, and inhibited PL and HOXA10 gene expression.

Conclusions: The sodium arsenite could affect the gene expression related to growth and development and it is shown that the molecular genetic mechanism of sodium arsenite is related to growth and development.

Download full-text PDF

Source

Publication Analysis

Top Keywords

sodium arsenite
24
gene expression
16
growth development
16
times control
12
control group
12
gene
10
genetic mechanism
8
mechanism sodium
8
arsenite growth
8
arsenite gene
8

Similar Publications

Stress Granule Induction in Rat Retinas Damaged by Constant LED Light.

Invest Ophthalmol Vis Sci

January 2025

Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Biológica Ranwel Caputto. Córdoba, Argentina.

Purpose: Stress granules (SGs) are cytoplasmic biocondensates formed in response to various cellular stressors, contributing to cell survival. Although implicated in diverse pathologies, their role in retinal degeneration (RD) remains unclear. We aimed to investigate SG formation in the retina and its induction by excessive LED light in an RD model.

View Article and Find Full Text PDF

CISD2-mediated mitochondrial dysfunction and iron redistribution contributes to ferroptosis in arsenic-induced nonalcoholic steatohepatitis.

Ecotoxicol Environ Saf

January 2025

Department of Occupational and Environmental Health, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China; Global Health Research Center, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China. Electronic address:

Arsenic in the environment, such as sodium arsenic (NaAsO), is a frequently occurring hazard that has been linked to nonalcoholic steatohepatitis (NASH). Our prior research established the involvement of ferroptosis in arsenic-induced NASH, but the precise underlying mechanisms remain elusive. Here, we found that exposure to NaAsO had a suppressive effect on the expression of CDGSH iron-sulfur domain-containing protein 2 (CISD2) at the protein and gene levels, and overexpression of CISD2 inhibited NaAsO-induced ferroptosis and NASH.

View Article and Find Full Text PDF

The dysfunction of stress granules (SGs) plays a crucial role in the pathogenesis of various neurological disorders, with T cell intracellular antigen 1 (TIA1) being a key component of SGs. However, the role and mechanism of TIA1-mediated SGs in experimental autoimmune encephalomyelitis (EAE) remain unclear. In this study, upregulation of TIA1, its translocation from the nucleus to the cytoplasm, and co-localization with G3BP1 (a marker of SGs) are observed in the spinal cord neurons of EAE mice.

View Article and Find Full Text PDF

Artemisinin is a sesquiterpene lactone derived from the plant L., renowned for its antimalarial activity. Based on this compound, various derivatives and analogues have been obtained that exhibit diverse biological activities, including clinically approved drugs.

View Article and Find Full Text PDF

Arsenic in drinking water has been associated with an increased risk of health concerns. This metalloid is ingested and distributed throughout the body, accumulating in several organs, including the testis. In this organ, arsenic disturbs steroidogenesis and spermatogenesis and affects male fertility.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!