The complex Ru(dipa)(2)(2+) (dipa = di-2-pyridylmethanamine) has been prepared, yielding approximately a statistical ratio of the meso and rac isomers. The electronic spectra of both isomers show pyridyl pi --> pi transitions in the UV region and MLCT bands in the visible region. The solvent dependence of the spectra provides evidence of hydrogen bond formation between the solvent and the NH(2) site on the ligand. The electrochemical properties of the two isomers are identical; each undergoes a reversible one-electron oxidation in acetonitrile (E(1/2) = 0.933 V vs Ag/AgCl) and in aqueous solution below pH 3 (E(1/2) = 0.786 V vs Ag/AgCl). In aqueous solution above pH 3, one-electron oxidation of the ruthenium center is followed by deprotonation of the ligand NH(2) site yielding a reactive amidoruthenium(III) species. The ruthenium-bound dipa ligand possesses structural constraints that prevent the usual oxidative dehydrogenation reaction, which would yield exclusively the corresponding imine. Instead the amidoruthenium(III) intermediate finds alternative reaction routes leading to multiple products.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic030242aDOI Listing

Publication Analysis

Top Keywords

nh2 site
8
one-electron oxidation
8
ag/agcl aqueous
8
aqueous solution
8
synthesis characterization
4
characterization bisdi-2-pyridylmethanaminerutheniumii
4
bisdi-2-pyridylmethanaminerutheniumii complex
4
complex rudipa22+
4
rudipa22+ dipa
4
dipa di-2-pyridylmethanamine
4

Similar Publications

Spin State Modulation with Oxygen Vacancy Orientates C/N Intermediates for Urea Electrosynthesis of Ultrahigh Efficiency.

Adv Mater

January 2025

State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, 550025, China.

The co-electrolysis of CO and NO to synthesize urea has become an effective pathway to alternate the conventional Bosch-Meiser process, while the complexity of C-/N-containing intermediates for C-N coupling results in the urea electrosynthesis of unsatisfactory efficiency. In this work, an electronic spin state modulation maneuver with oxygen vacancies (Ov) is unveiled to effectively meliorate the oriented generation of key intermediates NH and CO for C-N coupling, furnishing urea in ultrahigh yield of 2175.47 µg mg h and Faraday efficiency of 70.

View Article and Find Full Text PDF

Understanding non-reducible N in the mechanism of Mo-nitrogenase.

Dalton Trans

January 2025

School of Chemistry, UNSW Sydney, NSW 2052, Australia.

In my proposed mechanism of Mo-nitrogenase there are two roles for separate N molecules. One N diffuses into the reaction zone between Fe2 and Fe6 where a strategic gallery of H atoms can capture N to form the Fe-bound HNNH intermediate which is then progressively hydrogenated through intermediates containing HNNH, NH and NH entities and then two NH in sequence. The second N can be parked in an N-pocket about 3.

View Article and Find Full Text PDF

Synchronous Photocatalytic Redox Conversion of Chromium(VI) and Arsenic(III) by Bimetallic Fe/Ti Metal-Organic Frameworks.

Inorg Chem

January 2025

School of Life and Environmental Sciences, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, P.R. China.

In this work, bimetallic organic frameworks NH-MOFs(Fe, Ti) with different Fe/Ti molar ratios were prepared by a hydrothermal method for the synchronous redox transformation of Cr(VI) and As(III). These results showed that NH-MIL-125(Ti) was less effective in the photocatalytic removal of Cr(VI), whereas NH-MIL-88B(Fe) was less effective in the photocatalytic oxidative removal of As(III). Due to the introduction of Fe, the photocatalytic reduction removal of Cr(VI) (23.

View Article and Find Full Text PDF

The use of enzymes as catalysts in industrial processes has been studied, and they offer more ecologically friendly options for chemical reactions. In the current work, we investigated the potential of molecular modeling to solve the ordinarily difficult problem of identifying the amino acids involved in the covalent mode of immobilization by in silico investigations. The immobilized α-Amylase on Cellulose tosylate (henceforth referred to as Celltos) shows extra peaks of OH and NH, CN, SO, C-O-C, and CS.

View Article and Find Full Text PDF

Theoretical Study of Extensive Hydrogen Abstraction Reactions for 2-Hydroxyethylhydrazine (HEH).

J Phys Chem A

January 2025

National Key Laboratory of Solid Propulsion, School of Astronautics, Northwestern Polytechnical University, Xi'an 710072, China.

Energetic ionic liquids have a high potential to replace the traditional monopropellant hydrazine as a high-energy green propellant and can be widely used in aerospace technology. A high-energy ionic liquid─HEHN has also gained extensive attention from researchers. To explore the reaction mechanism of HEHN and establish a chemical kinetic model for high-energy ionic liquid propellants, 28 hydrogen abstraction reactions of HEH, which is the main decomposition product of HEHN, were investigated in this study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!