For a set of 846 organic compounds, relevant in forensic analytical chemistry, with highly diverse chemical structures, the gas chromatographic Kovats retention indices have been quantitatively modeled by using a large set of molecular descriptors generated by software Dragon. Best and very similar performances for prediction have been obtained by a partial least squares regression (PLS) model using all considered 529 descriptors, and a multiple linear regression (MLR) model using only 15 descriptors obtained by a stepwise feature selection. The standard deviations of the prediction errors (SEP), were estimated in four experiments with differently distributed training and prediction sets. For the best models SEP is about 80 retention index units, corresponding to 2.1-7.2% of the covered retention index interval of 1110-3870. The molecular properties known to be relevant for GC retention data, such as molecular size, branching and polar functional groups are well covered by the selected 15 descriptors. The developed models support the identification of substances in forensic analytical work by GC-MS in cases the retention data for candidate structures are not available.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chroma.2003.12.003 | DOI Listing |
Plants (Basel)
January 2025
Department of Crop and Soil Science, Oregon State University, Ontario, OR 97914, USA.
is a genus of 98 species, widely distributed in western North America. This work presents a chemometric analysis of the essential oils of seven species of (, var. , , , , , and var.
View Article and Find Full Text PDFMolecules
January 2025
Aromatic Plant Research Center, 230 N 1200 E, Suite 100, Lehi, UT 84043, USA.
Members of the genus are well known for their medicinal properties, which can be attributed to their essential oils. In this work, we have examined the leaf essential oils of five understudied species collected from various locations in western North America. The essential oils were obtained by hydrodistillation and analyzed by gas chromatographic methods, including enantioselective gas chromatography.
View Article and Find Full Text PDFChemistry
January 2025
Tianjin Normal University, Chemistry, No393 west Binshui Road, Tianjin, CHINA.
Achieving the adsorptive separation and chromatographic separation of industrially the important chemicals toluene and methylcyclohexane using the same material is a highly desirable goal. We have successfully accomplished this using a fluorinated macrocycle tetrafluoroterphen[3]arene (4FTP3), which was synthesized and used for gas chromatographic separation in our previous work. The macrocycle 4FTP3 permitted the adsorptive separation of toluene from a toluene/methylcyclohexane mixture (1:1, v/v) with a purity of 99.
View Article and Find Full Text PDFMetabolites
January 2025
Institute of Toxicology, Core Unit Proteomics, Hannover Medical School, 30623 Hannover, Germany.
Charge-free gaseous molecules labeled with deuterium H (D) atoms elute earlier than their protium-analogs H (H) from most stationary GC phases. This effect is known as the chromatographic H/D isotope effect (IE) and can be calculated by dividing the retention times () of the protiated ( ) to those of the deuterated () analytes: IE = /. Analytes labeled with C, N or O have almost identical retention times and lack a chromatographic isotope effect.
View Article and Find Full Text PDFSe Pu
February 2025
School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China.
Solid-phase microextraction (SPME) is a fast and simple sample preparation technique that enables the enrichment of analytes, and it is used in combination with other detection techniques to provide accurate and sensitive analytical methods. SPME is widely used in environmental monitoring, food safety, life analysis, biomedicine, and other applications. The extractive coating is the core of the SPME technique, and the properties of the extractive coating greatly influence extraction selectivity and efficiency, as well as the enrichment effect.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!