Background & Aims: Visceral hypersensitivity is a common feature of functional gastrointestinal disorders. One speculated mechanism is an activity-dependent increase in spinal cord neuronal excitability (central sensitization), which is dependent on activation of the N-methyl-D-aspartate (NMDA) receptor. Our aims were to determine whether the development and maintenance of human visceral hypersensitivity is NMDA receptor mediated.
Methods: Healthy subjects were studied using a randomized, double-blind, placebo-controlled, crossover design. Pain thresholds to electrical stimulation were determined both in the proximal esophagus and in the foot (control) before and after a 30-minute distal esophageal infusion of 0.15 mol/L HCl acid. Ketamine (NMDA receptor antagonist) or saline (vehicle) was given intravenously either prior to or following acid infusion, and pain thresholds were measured for the following 120 minutes. Protocol 1: In 6 subjects, the effect of ketamine in the esophagus was assessed without acid infusion. Protocol 2: In 14 subjects, ketamine was given prior to esophageal acid. Protocol 3: In 12 subjects, ketamine was given after esophageal acid.
Results: Protocol 1: In the absence of esophageal acid, ketamine had no effect on either esophageal or foot pain thresholds (area-under-the-curve, [AUC] P = 0.36 esophagus, P = 0.34 foot, ANOVA) within 30 minutes of cessation of the infusion. Protocol 2: Acid-induced esophageal hypersensitivity was prevented by ketamine (AUC, P < 0.0001, ANOVA) without affecting foot pain thresholds (AUC, P = 0.06, ANOVA). Protocol 3: Ketamine delivered after acid reversed the induction of esophageal hypersensitivity induced by acid (AUC, P < 0.0001, ANOVA).
Conclusions: The induction and maintenance of acid-induced esophageal hypersensitivity is prevented and reversed by ketamine. This finding strongly indicates that central sensitization is a mechanism of visceral hypersensitivity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1053/j.gastro.2003.11.047 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!