Biliverdin IXalpha reductase (BVR) catalyzes reduction of the HO activity product, biliverdin, to bilirubin. hBVR is a serine/threonine kinase that contains a bZip domain. Presently, regulation of gene expression by hBVR was examined. 293A cells were infected with adenovirus-doxycycline (Ad-Dox)-inducible hBVR cDNA. High level expression of hBVR was determined at mRNA, protein, and activity levels 8 h after induction. Cell signal transduction microarray analysis of cells infected with expression or with the control Ad-inverted (INV)-hBVR vector identified ATF-2 among several up-regulated genes. ATF-2 is a bZip transcription factor for activation of cAMP response element (CRE) and a dimeric partner to c-jun in MAPK pathway that regulates the stress protein, HO-1, expression. Northern and Western blot analyses showed increases of approximately 10-fold in ATF-2 mRNA and protein at 16 and 24 h after Dox addition. Ad-INV-hBVR did not effect ATF-2 expression. In hBVR-infected cells, levels of HO-1 mRNA and protein were increased. In vitro translated hBVR and nuclear extract containing hBVR in gel mobility-shift assay bound to AP-1 sites in the ATF-2 promoter region and to an oligonucleotide containing the CRE site. Both bindings could be competed out by excess unlabeled probe; in the presence of hBVR antibody, they displayed shifted bands. Co-transfection of hBVR with ATF-2 or c-jun promoters caused a severalfold increase in luciferase activity. hBVR modulation of ATF-2 and HO-1 expression suggests it has a potential role in regulation of AP-1 and cAMP-regulated genes and a role in cell signaling. We propose that increased expression of the protein can be used to alter the gene expression profile in the cell.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M314251200 | DOI Listing |
Sci Data
December 2024
Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
Abscisic acid (ABA) is a crucial phytohormone that regulates plant growth and stress responses. While substantial knowledge exists about transcriptional regulation, the molecular mechanisms underlying ABA-triggered translational regulation remain unclear. Recent advances in deep sequencing of ribosome footprints (Ribo-seq) enable the mapping and quantification of mRNA translation efficiency.
View Article and Find Full Text PDFCancer Cell Int
December 2024
Department of General Surgery, Affiliated Zhongda Hospital of Southeast University, Nanjing, 210009, China.
Insulin-like growth factor II mRNA-binding proteins (IGF2BPs), a family of RNA-binding proteins, are pivotal in regulating RNA dynamics, encompassing processes such as localization, metabolism, stability, and translation through the formation of ribonucleoprotein complexes. First identified in 1999 for their affinity to insulin-like growth factor II mRNA, IGF2BPs have been implicated in promoting tumor malignancy behaviors, including proliferation, metastasis, and the maintenance of stemness, which are associated with unfavorable outcomes in various cancers. Additionally, non-coding RNAs (ncRNAs), particularly long non-coding RNAs, circular RNAs, and microRNAs, play critical roles in cancer progression through intricate protein-RNA interactions.
View Article and Find Full Text PDFFish Shellfish Immunol
December 2024
Department of Biotechnology, School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning Province, P. R. China; Dalian Jinshiwan Laboratory, Dalian, China. Electronic address:
A number of studies have been demonstrated that arachidonate 5-lipoxygenase (ALOX-5) plays a role in regulating a range of physiological and pathological processes through the catalysis of leukotriene formation from arachidonic acid (ARA). The coding sequence of ALOX-5 from Apostichopus japonicus (Aj-ALOX-5) was successfully amplified, resulting in a 2028 bp ORF sequence that encodes 674 amino acids. A comparison of the amino acid sequence with those of other 5-lipoxygenases revealed that Aj-ALOX-5 has the N-terminal "PLAT domain" and C-terminal "lipoxygenase structural domain" characteristic of this enzyme family.
View Article and Find Full Text PDFGene
December 2024
Department of Medical Genetics/Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou 510515, China; Department of Fetal Medicine and Prenatal Diagnosis, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China. Electronic address:
Background/aim: Autosomal-recessive carnitine-acylcarnitine translocase deficiency (CACTD) is a rare disorder of long-chain fatty acid oxidation caused by variants in the SLC25A20 gene. Under fasting conditions, most newborns with severe CACTD experience sudden cardiac arrest and hypotonia, often leading to premature death due to rapid disease progression. Understanding of genetic factors and pathogenic mechanisms in CACTD is essential for its diagnosis, treatment, and prevention.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Faculty of Medical Engineering, National University of Science and Technology Politehnica Bucharest, Gheorghe Polizu 1-7, 011061 Bucharest, Romania; Advanced Polymer Materials Group, University Politehnica of Bucharest, Gheorghe Polizu 1-7, 011061 Bucharest, Romania; ebio-Hub Research Centre, University Politehnica of Bucharest-Campus, Iuliu Maniu 6, 061344 Bucharest, Romania. Electronic address:
Multiple myeloma (MM), a hematological malignancy which affects the monoclonal plasma cells in the bone marrow, is in rising incidence around the world, accounting for approximately 2 % of newly diagnosed cancer cases in the US, Australia, and Western Europe. Despite the progress made in the last few years in the available therapeutic options (e.g.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!