By proteolytic cleavage of insulin-like growth factor binding proteins, the metalloproteinase pregnancy-associated plasma protein-A (PAPP-A) is able to control the biological activity of insulin-like growth factors. PAPP-A circulates in pregnancy as a proteolytically inactive complex, disulfide bound to the proform of eosinophil major basic protein (proMBP). We here demonstrate that co-transfection of mammalian cells with PAPP-A and proMBP cDNA results in the formation of a covalent PAPP-A/proMBP complex in which PAPP-A is inhibited. Formation of the complex also occurs when PAPP-A and proMBP synthesized separately are incubated. Complex formation was monitored by Western blotting, and by using an immunoassay specific for the complex. Using mutagenesis, we further demonstrate that the complex forms in a specific manner and depends on the presence of two proMBP cysteine residues. Mutated proMBP, in which Cys-51 and -169 are replaced by serine, is unable to form the covalent complex with PAPP-A. Of particular interest, such mutated proMBP further lacks the ability to inhibit PAPP-A. For the first time, this conclusively demonstrates that proMBP is a proteinase inhibitor. We further conclude that proMBP inhibits PAPP-A in an unusual manner, not paralleled by other proteinase inhibitors of our knowledge, which requires proMBP to be covalently bound to PAPP-A by disulfide bonds. ProMBP binding to PAPP-A most likely either abrogates substrate access to the active site of PAPP-A or induces a conformational change in the structure of PAPP-A, as we, by further mutagenesis, were able to exclude that the inhibitory mechanism of proMBP is based on a cysteine switch-like mechanism.

Download full-text PDF

Source
http://dx.doi.org/10.1016/S0014-5793(04)00095-XDOI Listing

Publication Analysis

Top Keywords

prombp
12
papp-a
12
proform eosinophil
8
eosinophil major
8
major basic
8
basic protein
8
protein prombp
8
insulin-like growth
8
papp-a prombp
8
complex papp-a
8

Similar Publications

Objectives: In combined first trimester screening for Down syndrome, Pregnancy-Associated Plasma Protein A (PAPP-A) is pivotal. PAPP-A tests evaluate total PAPP-A, consisting of the biologically active free PAPP-A (fPAPP-A) and PAPP-A complexed with eosinophil major basic protein's proform (proMBP). While PAPP-A is well-researched, limited understanding persists regarding fPAPP-A's first trimester concentrations and diagnostic utility.

View Article and Find Full Text PDF

Cryo-EM structure of human PAPP-A2 and mechanism of substrate recognition.

Commun Chem

October 2023

Calico Life Sciences LLC, South San Francisco, CA, 94080, USA.

Pregnancy-Associated Plasma Protein A isoforms, PAPP-A and PAPP-A2, are metalloproteases that cleave insulin-like growth factor binding proteins (IGFBPs) to modulate insulin-like growth factor signaling. The structures of homodimeric PAPP-A in complex with IGFBP5 anchor peptide, and inhibitor proteins STC2 and proMBP have been recently reported. Here, we present the single-particle cryo-EM structure of the monomeric, N-terminal LG, MP, and the M1 domains (with the exception of LNR1/2) of human PAPP-A2 to 3.

View Article and Find Full Text PDF

Structural insights into the covalent regulation of PAPP-A activity by proMBP and STC2.

Cell Discov

December 2022

Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.

Originally discovered in the circulation of pregnant women as a protein secreted by placental trophoblasts, the metalloprotease pregnancy-associated plasma protein A (PAPP-A) is also widely expressed by many other tissues. It cleaves insulin-like growth factor-binding proteins (IGFBPs) to increase the bioavailability of IGFs and plays essential roles in multiple growth-promoting processes. While the vast majority of the circulatory PAPP-A in pregnancy is proteolytically inactive due to covalent inhibition by proform of eosinophil major basic protein (proMBP), the activity of PAPP-A can also be covalently inhibited by another less characterized modulator, stanniocalcin-2 (STC2).

View Article and Find Full Text PDF

Development and application of novel immunoassays for eosinophil granule major basic proteins to evaluate eosinophilia and myeloproliferative disorders.

J Immunol Methods

June 2021

Division of Allergic Diseases, Department of Medicine, Mayo Clinic, Rochester, MN, United States of America; Departments of Dermatology and Medicine, University of Utah, Salt Lake City, UT, United States of America.

Background: During eosinophil differentiation, the granule eosinophil major basic protein 1 (eMBP1) is synthesized as a 32-kDa precursor form, referred to as proMBP1, which is processed into the 14-kDa mature form of eMBP1. The prevalence of these two forms of MBP1 in most pathological conditions remains unknown.

Objective: To develop the immunoassays that differentiate mature eMBP1 and proMBP1 and apply them to analyze their levels in biological fluids from patients with eosinophilia and hematologic disorders.

View Article and Find Full Text PDF

A common variant of the pregnancy-associated plasma protein-A (PAPPA) gene encodes a protein with reduced proteolytic activity towards IGF-binding proteins.

Sci Rep

September 2019

Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, Rigshospitalet, Copenhagen University Hospital, Copenhagen University, Copenhagen, DK-2100, Denmark.

Pregnancy-associated plasma protein-A (PAPP-A) is a key regulator of insulin-like growth factor (IGF) bioactivity, by releasing the IGFs from their corresponding IGF-binding proteins (IGFBPs). The minor allele of the single nucleotide polymorphism (SNP), rs7020782 (serine < tyrosine), in PAPPA has previously been associated with recurrent pregnancy loss as well as with significant reduced levels of PAPP-A protein in human ovarian follicles. The aim of the present study was to reveal a possible functional effect of the rs7020782 SNP in PAPPA by comparing recombinant PAPP-A proteins from transfected human embryonic kidney 293 T cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!