Precise efficiency calibration of an HPGe detector up to 3.5 MeV, with measurements and Monte Carlo calculations.

Appl Radiat Isot

Idaho National Engineering and Environmental Laboratory, Idaho Accelerator Center, Idaho State University, P.O. Box 1625, Pocatello, Idaho Falls, ID 83415-2114, USA.

Published: May 2004

Previously we used relative and absolute efficiency measurements combined with Monte Carlo calculations to define the efficiency of an HPGe gamma-ray detector with 0.2% accuracy from 50 to 1400 keV. This work has been extended to 4.8 MeV with measurements of relative efficiencies from 24Na, 56Co, and 66Ga sources. The combined results of experiment and calculation yield an efficiency curve up to 3.5 MeV with 0.4% accuracy. Single- and double-escape peak contributions also agree with calculation if positron annihilation-in-flight is incorporated.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.apradiso.2003.11.012DOI Listing

Publication Analysis

Top Keywords

mev measurements
8
monte carlo
8
carlo calculations
8
precise efficiency
4
efficiency calibration
4
calibration hpge
4
hpge detector
4
detector mev
4
measurements monte
4
calculations relative
4

Similar Publications

Characterization of the upgraded photoinjector at the Chinese Academy of Engineering Physics Terahertz Free Electron Laser Facility.

Rev Sci Instrum

January 2025

National Key Laboratory of Science and Technology on Advanced Laser and High Power Microwave, Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang 621900, China.

The Chinese Academy of Engineering Physics Terahertz Free Electron Laser Facility (CAEP THz FEL, CTFEL) has been operated as a user facility for over five years. To further meet the growing demands of modern science, an upgrade project for an infrared-terahertz free electron laser facility based on CTFEL has been proposed to broaden the frequency range from 0.1-4.

View Article and Find Full Text PDF

Limited availability constrains the implementation of Ac, the most promising α emitter for targeted therapy, in clinical practice. Proton activation of Ra is one of few realistic solutions to this problem. We have therefore measured cross sections of relevant Ra(p,xn) nuclear reactions in the energy range of 12.

View Article and Find Full Text PDF

Purpose: To propose comprehensive characterization methods of additive manufacturing (AM) materials for MV photon and MeV electron radiotherapy.

Methodology: This study investigated 15 AM materials using CT machines. Geometrical accuracy, tissue-equivalence, uniformity, and fabrication parameters were considered.

View Article and Find Full Text PDF

Glass system of 45BO-20ZnO-30BaO-5X, (where X represents CaO, MgO, AlO, TiO, CuO and FeO) in mole percentage was investigated for gamma ray radiation shielding experimentally. Six glass composites were fabricated and the density was measured experimentally and the BZBCa glass sample has the least density with a value of 3.932 g cm and this is due to the presence of CaO in it, and the sample BZBFe has the highest density with a value of 4.

View Article and Find Full Text PDF

F radioactive isotope is widely used in PET imaging for nuclear medicine. Medical linear accelerators producing high-flux bremsstrahlung beams up to 20 MeV are commonly used in radiation therapy. Hence, the production of F through photon-induced channels will reduce many of the intricacies in transportation and handling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!