Exercise and training effects on blood haemostasis in health and disease: an update.

Sports Med

School of Sports and Exercise Science, Faculty of Science, Liverpool John Moores University, Liverpool, UK.

Published: July 2004

In recent years, the dysfunction of the haemostatic system in relation to the clinical complications from arterioscleroses and cardiovascular diseases has become more recognised. Blood coagulation and fibrinolysis comprise two important physiological systems, which are regulated by a balance between activators and inhibitors. Activation of blood coagulation is associated with accelerated clot formation, whereas activation of blood fibrinolysis enhances the breakdown of the blood clot. Available evidence suggests that strenuous exercise induces activation of blood coagulation with simultaneous enhancement of blood fibrinolysis. Although the responses of blood coagulation and fibrinolysis appear to be related to the exercise intensity and its duration, recent reports suggest that moderate exercise intensity is followed by activation of blood fibrinolysis without concomitant hyper-coagulability, while very intense exercise is associated with concurrent activation of blood coagulation and fibrinolysis. Similar to blood coagulation and fibrinolysis, systemic platelet-related thrombogenic factors have been shown to be involved in the initiation and progression of atherogenesis and plaque growth. Although exercise effects on platelet aggregation and function in healthy individuals have been examined, the results reported have been conflicting. However, for patients with coronary heart disease, the balance of evidence available would strongly suggest that platelet aggregation and functions are increased with exercise. Few studies are available concerning the influence of training on blood coagulation and fibrinolysis and the exact effects of exercise training on the equilibrium between blood coagulation and fibrinolysis is not as yet known. Although the effects of physical training on platelets have been briefly investigated, available meagre evidence suggests that exercise training is associated with favourable effects on platelet aggregation and activation in both men and women.

Download full-text PDF

Source
http://dx.doi.org/10.2165/00007256-200434030-00004DOI Listing

Publication Analysis

Top Keywords

blood coagulation
32
coagulation fibrinolysis
24
activation blood
20
blood
13
exercise training
12
blood fibrinolysis
12
platelet aggregation
12
exercise
9
fibrinolysis
9
coagulation
8

Similar Publications

Background: Immunothrombosis is the process by which the coagulation cascade interacts with the innate immune system to control infection. However, the formation of clots within the brain vasculature can be detrimental to the host. Recent work has demonstrated that Toxoplasma gondii infects and lyses central nervous system (CNS) endothelial cells that form the blood-brain barrier (BBB).

View Article and Find Full Text PDF

A self-elastic chitosan sponge reinforced with lauric acid-modified quaternized chitosan and attapulgite to treat noncompressible hemorrhage and facilitate wound healing.

Carbohydr Polym

March 2025

Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China. Electronic address:

The development of self-elastic sponges with enhanced hemostatic and antibacterial properties to treat noncompressible hemorrhage and facilitate wound healing remains challenging. Herein, we prepared a chitosan sponge reinforced with lauric acid-modified quaternized chitosan (LQC) and attapulgite, features a porous structure, high self-elasticity, and rapid shape recovery. The incorporation of LQC conferred the sponge with an enhanced capacity to promote the adhesion, aggregation, and activation of blood cells, and resistance to infection by Staphylococcus aureus, Escherichia coli, and Methicillin-resistant Staphylococcus aureus; the incorporation of attapulgite enhanced the hydrophilicity and mechanical strength of the sponge, and its ability to activate the intrinsic and extrinsic coagulation pathways.

View Article and Find Full Text PDF

An injectable in situ-forming hydrogel with self-activating genipin-chitosan (GpCS) cross-linking and an O/Ca self-supplying capability for wound healing and rapid hemostasis.

Carbohydr Polym

March 2025

Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan; International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan. Electronic address:

Severe traumatic bleeding and chronic diabetic wounds require rapid hemostasis and multifunctional dressings, which remain particularly challenging, especially for non-compressible trauma and irregular wounds with dysregulated microenvironments. Chitosan (CS) can be easily cross-linked with genipin to form GpCS hydrogels. However, developing injectable GpCS hydrogels for biomedical applications faces challenges, particularly in enhancing rapid gel formation and optimizing physical properties.

View Article and Find Full Text PDF

After severe trauma, but also perioperatively, massive bleeding is associated with increased morbidity and mortality. In severely injured patients, hemorrhagic shock remains to be the main cause of death in addition to traumatic brain hemorrhage. In non-cardiac surgery, a surgical bleeding complication increases perioperative morbidity (intensive care length of stay, acute renal failure, infections, thromboembolic complications) by a factor of three to four and mortality by a factor of six.

View Article and Find Full Text PDF

Xuefu Zhuyu Decoction Improves Blood-Brain Barrier Integrity in Acute Traumatic Brain Injury Rats via Regulating Adenosine.

Chin J Integr Med

January 2025

Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.

Objective: To explore the neuroprotective effects of Xuefu Zhuyu Decoction (XFZYD) based on in vivo and metabolomics experiments.

Methods: Traumatic brain injury (TBI) was induced via a controlled cortical impact (CCI) method. Thirty rats were randomly divided into 3 groups (10 for each): sham, CCI and XFZYD groups (9 g/kg).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!