Rationale: Prior research indicates that psychostimulant-induced sensitization is not expressed in lateral hypothalamic electrical self-stimulation (LHSS)-based measures of drug reward, although the augmenting effect of chronic food restriction is. Neuroadaptations within the brain dopamine system have been identified in both psychostimulant-sensitized and food-restricted animals. Consequently, a variant of the LHSS paradigm in which responding is particularly sensitive to changes in dopaminergic tone may be best suited to detect and compare effects of chronic d-amphetamine and food restriction. Instrumental responding on a progressive ratio (PR) schedule is more sensitive to dopaminergic manipulations than is responding on a continuous reinforcement (CRF) schedule, but has not previously been used to examine chronic psychostimulant and food restriction effects on LHSS-based measures of drug reward.

Objective: The first aim of this study was to determine whether a regimen of d-amphetamine treatment, that produces locomotor sensitization (5 mg/kg per day x5 days), increases the reward-potentiating effect of d-amphetamine in a PR LHSS protocol. The second aim, was to determine whether chronic food restriction produces a marked increase in the reward-potentiating effect of d-amphetamine in the PR LHSS protocol and, if so, whether it is reversible in parallel with body weight recovery when free feeding is restored.

Method: Reward-potentiating effects of a challenge dose of d-amphetamine (0.25 mg/kg, IP) were measured in terms of the break point of LHSS responding on a PR schedule of reinforcement, in ad libitum fed and food-restricted rats.

Results: A regimen of d-amphetamine treatment that produced locomotor sensitization did not increase the break point for LHSS in the presence or absence of d-amphetamine. Chronic food restriction produced a marked increase in the break point-increasing effect of d-amphetamine (3-fold), which returned to baseline in parallel with body weight recovery over a 4-week period of restored free-feeding.

Conclusions: A locomotor-sensitizing regimen of d-amphetamine treatment does not increase the rewarding effect of LH electrical stimulation or the reward-potentiating effect of d-amphetamine in a PR LHSS protocol. The augmenting effect of chronic food restriction on drug reward is mechanistically and functionally different from psychostimulant sensitization and may be controlled by signals associated with adipose depletion and repletion.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00213-003-1768-4DOI Listing

Publication Analysis

Top Keywords

food restriction
28
regimen d-amphetamine
16
chronic food
16
d-amphetamine
12
d-amphetamine treatment
12
reward-potentiating d-amphetamine
12
d-amphetamine lhss
12
lhss protocol
12
progressive ratio
8
ratio schedule
8

Similar Publications

Introduction: Masking is a reporting bias where drug safety signals are muffled by elevated reporting of other medications in spontaneous reporting databases. While the impact of masking is often limited, its effect when using restricted designs, such as active comparators, can be consequential.

Methods: We used data from the US Food and Drugs Administration Adverse Event Reporting System (1999Q3-2013Q3) to study masking in a real-world example.

View Article and Find Full Text PDF

Background: Perinatal growth and nutrition have been shown to be determinants in the programming of different tissues, such as adipose tissue, predisposing individuals to metabolic alterations later in life. Previous studies have documented an increased risk of metabolic disturbances and low-grade inflammation in prepubertal children with a history of extrauterine growth restriction (EUGR). The aim of this study was to evaluate possible alterations resulting from impaired growth during early childhood and their impact on young adult health.

View Article and Find Full Text PDF

Food intake is controlled by multiple converging signals: hormonal signals that provide information about energy homeostasis, but also hedonic and motivational aspects of food and food cues that can drive non-homeostatic or "hedonic" feeding. The ventral pallidum (VP) is a brain region implicated in the hedonic and motivational impact of food and foods cues, as well as consumption of rewards. Disinhibition of VP neurons has been shown to generate intense hyperphagia, or overconsumption.

View Article and Find Full Text PDF

: carbohydrate-restricted diets (CRDs) have gained attention to address metabolic dysregulation commonly observed in dyslipidemia, a condition posing significant risks to cardiovascular health. However, the effectiveness of CRDs in improving cardiovascular health remains contentious. This meta-analysis comprehensively evaluated the long-term effects of CRDs on glucolipid metabolism and weight loss in individuals with dyslipidemia.

View Article and Find Full Text PDF

Introduction: Coenzyme Q10 (CoQ10) is a fat-soluble vitamin-like quinone. The plasma levels of CoQ10 are reduced in patients with chronic kidney disease (CKD). CoQ10 supplementation can improve mitochondrial function and decrease oxidative stress in these patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!