Rationale: Clinical reports indicate that acute exposure to 3,4-methylenedioxymethamphetamine (MDMA; "Ecstasy") may induce pathological cerebrovascular responses in human users of the drug, however, the mechanism by which MDMA might effect these pathological changes is not clear.

Objectives: To examine the effects of acute MDMA administration on the relationship between local cerebral blood flow (LCBF) and local cerebral glucose utilisation (LCMRglu); to determine the effect, if any, acute exposure to MDMA has on the cerebral circulation, independently of alterations in cerebral metabolic demand.

Methods: Dark Agouti rats were injected with 15 mg.kg(-1) i.p. MDMA or saline equivalent. LCBF and LCMRglu were measured in 50 brain areas using the fully quantitative [14C]iodoantipyrine and [14C]2-deoxyglucose autoradiographic techniques, respectively.

Results: MDMA produced significant increases in LCMRglu in 23 brain areas, most markedly in the motor system (globus pallidus; +82%; medial striatum; +71%). In contrast, significant decreases in LCBF were observed in 28 brain areas, most markedly in primary sensory nuclei (superior colliculus; -32%) and limbic areas (anterior thalamus; -34%). Global analysis revealed a close correlation (r=0.87) between LCMRglu and LCBF with a ratio of 1.53 in controls. Despite the divergence of LCMRglu (increases) and LCBF (decreases) in MDMA-treated groups, there was a similar close correlation (r=0.84), but the ratio was decreased to 1.22.

Conclusions: This study provides clear evidence that acute exposure to MDMA results in cerebrovascular dysfunction. The uncoupling of LCBF from underlying metabolic demand, possibly due to the vasoconstrictor action of 5-HT, could provide the basis for oligaemia-induced pathological changes in the brain.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00213-004-1784-zDOI Listing

Publication Analysis

Top Keywords

local cerebral
12
acute exposure
12
brain areas
12
cerebral blood
8
blood flow
8
glucose utilisation
8
dark agouti
8
pathological changes
8
exposure mdma
8
areas markedly
8

Similar Publications

Background: How cerebral microbleeds (CMBs) are formed, and how they cause tissue damage is not fully understood, but it has been suggested they are associated with inflammation, and they could also be related to increased blood-brain barrier (BBB) leakage. We investigated the relationship of CMBs with inflammation and BBB leakage in cerebral small vessel disease, and in particular, whether these 2 processes were increased in the vicinity of CMBs.

Methods: In 54 patients with sporadic cerebral small vessel disease presenting with lacunar stroke, we simultaneously assessed microglial activation using the positron emission tomography ligand [11C]PK11195 and BBB leakage using dynamic contrast enhanced magnetic resonance imaging, on a positron emission tomography-magnetic resonance imaging system.

View Article and Find Full Text PDF

Background: The safe timing window for surgery during the acute phase of inflammation due to traumatic brain injury (TBI) has not been studied extensively. We aimed to elucidate the relationship between the timing of surgery and changes in perioperative serum levels of inflammatory cytokines and factors associated to optimize TBI management in low-middle-income countries.

Methods: A prospective cohort study was conducted among TBI Patients with depressed skull fractures with a GCS > 8 operated at different timing from injury and followed up peri-operatively.

View Article and Find Full Text PDF

Resection is often the primary treatment for large brain tumors but is less practical for multiple brain metastases (BM). Current guidelines recommend stereotactic radiosurgery (SRS) for untreated BMs or following the surgical removal of a solitary BM to reduce the risk of local tumor recurrence. Preoperative SRS (pre-SRS) shows promise with fewer complications and more precise targeting, but it lacks tissue diagnosis and may hinder wound healing.

View Article and Find Full Text PDF

Recently acquired memories are reactivated in the hippocampus during sleep, an initial step for their consolidation. This process is concomitant with the hippocampal reactivation of previous memories, posing the problem of how to prevent interference between older and recent, initially labile, memory traces. Theoretical work has suggested that consolidating multiple memories while minimizing interference can be achieved by randomly interleaving their reactivation.

View Article and Find Full Text PDF

Distinctive gut antibiotic resistome, potential health risks and underlying pathways upon cerebral ischemia-reperfusion injury.

Environ Pollut

December 2024

Xiamen Key Laboratory of Indoor Air and Health, Center for Excellence in Regional Atmospheric Environment, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.

Article Synopsis
  • Antibiotic resistance genes (ARGs) from gut microbiota pose significant health risks and can be influenced by non-antibiotic factors like disease states, particularly in cases of cerebral ischemia-reperfusion injury (I/R) which is common in stroke patients.
  • Changes in the gut antibiotic resistome during I/R show an increase in tetracycline ARGs while other types, like aminoglycoside and glycopeptide ARGs, decrease, suggesting a shift in microbial resistance profiles.
  • The study identifies specific ARG hosts and pathways influenced by I/R, highlighting the increase in multidrug resistance genes and various biosynthetic processes in gut microbiota, providing potential targets for health interventions.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!