Food webs are descriptions of who eats whom in an ecosystem. Although extremely complex and variable, their structure possesses basic regularities. A fascinating question is to find a simple model capturing the underlying processes behind these repeatable patterns. Until now, two models have been devised for the description of trophic interactions within a natural community. Both are essentially based on the concept of ecological niche, with the consumers organized along a single niche dimension; for example, prey size. Unfortunately, they fail to describe adequately recent and high-quality data. Here, we propose a new model built on the hypothesis that any species' diet is the consequence of phylogenetic constraints and adaptation. Simple rules incorporating both concepts yield food webs whose structure is very close to real data. Consumers are organized in groups forming a nested hierarchy, which better reflects the complexity and multidimensionality of most natural systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nature02327 | DOI Listing |
Nat Commun
December 2024
School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia.
Sponges harbour complex microbiomes and as ancient metazoans and important ecosystem players are emerging as powerful models to understand the evolution and ecology of symbiotic interactions. Metagenomic studies have previously described the functional features of sponge symbionts, however, little is known about the metabolic interactions and processes that occur under different environmental conditions. To address this issue, we construct here constraint-based, genome-scale metabolic networks for the microbiome of the sponge Stylissa sp.
View Article and Find Full Text PDFFront Microbiol
December 2024
Indian Council of Agricultural Research-National Research Centre for Grapes, Pune, Maharashtra, India.
Introduction: Grapevine ( L.), one of the economically important fruit crops cultivated worldwide, harbours diverse endophytic bacteria (EBs) responsible for managing various fungal diseases. Anthracnose () (Penz.
View Article and Find Full Text PDFMol Phylogenet Evol
December 2024
Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA.
In plants, cellular function is orchestrated by three distinct genomes located within the nucleus, mitochondrion, and plastid. These genomes are interdependent, requiring tightly coordinated maintenance and expression. Plastids host several multisubunit protein complexes encoded by both the plastid and nuclear genomes.
View Article and Find Full Text PDFInfect Genet Evol
December 2024
University Paris-Est, Anses, Animal health laboratory, Bacterial zoonosis unit, Maisons-Alfort, France. Electronic address:
Burkholderia pseudomallei, a soil-borne bacterium that causes melioidosis, endemic in South and Southeast Asia and northern Australia, is now emerging in new regions. Since the 1990s, cases have been reported in French overseas departments, including Martinique and Guadeloupe in the Caribbean, and Reunion Island and Mayotte in the Indian Ocean, suggesting a local presence of the bacterium. Our phylogenetic analysis of 111 B.
View Article and Find Full Text PDFBMC Ecol Evol
December 2024
Department of Biology and Center for Biodiversity and Ecosystem Stewardship, Villanova University, 800 Lancaster Avenue, Villanova, PA, 19085, USA.
Lygodactylus geckos represent a well-documented radiation of miniaturized lizards with diverse life-history traits that are widely distributed in Africa, Madagascar, and South America. The group has diversified into numerous species with high levels of morphological similarity. The evolutionary processes underlying such diversification remain enigmatic, because species live in different ecological biomes, ecoregions and microhabitats, while suggesting strikingly high levels of homoplasy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!