Cytoplasmic deposition of alpha-synuclein aggregates is a common pathological feature of many neurodegenerative diseases. Strong evidence for the causative role of alpha-synuclein in these disorders is provided by genetic linkage between this gene and familial Parkinson's disease and by neurodegeneration in transgenic animals that overexpress this protein. In particular, it has been hypothesized that the accumulation of nonfibrillar oligomers of alpha-synuclein, which serve as intermediates for fibrillar inclusion body formation, causes neurodegeneration. However, little is known about how cells handle potentially toxic protein aggregates. Here we demonstrate that cells are capable of clearing preformed alpha-synuclein aggregates via the lysosomal degradation pathway. Consequently, blocking this pathway causes the accumulation of the aggregates in non-neuronal cells, differentiated neuroblastoma cells, and primary cortical neurons. This aggregate clearance occurs in an aggregation stage-specific manner; oligomeric intermediates are susceptible to clearance, whereas mature fibrillar inclusion bodies are not. Neutralization of the acidic compartments leads to the accumulation of alpha-synuclein aggregates and exacerbates alpha-synuclein toxicity in postmitotic neuronal cells, suggesting that the accumulation of oligomeric intermediates may be an important event leading to alpha-synuclein-mediated cell death. These results suggest that enhancing lysosomal function may be a potential therapeutic strategy to halt or even prevent the pathogenesis of Parkinson's disease and other Lewy body diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6730405 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.3809-03.2004 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Guangdong Key Laboratory for Hydrogen Energy Technologies, School of Materials and Energy, Foshan University, Foshan 528000, PR China.
Lithium metal electrodes inevitably lead to the decomposition of the liquid electrolyte and lithium dendrite growth, both of which result in the formation of unstable solid electrolyte intermediates (SEIs). Gel polymer electrolytes (GPEs) are expected to replace liquid electrolytes for optimizing the SEI issues of lithium metal. Herein, a cellulose-based gel electrolyte cross-linked by thiol-modified polyhedral oligomeric silsesquioxane (thiol-modified-POSS) was successfully obtained based on "thiol-ene" click chemistry.
View Article and Find Full Text PDFSubcell Biochem
December 2024
Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), and Department of Molecular Biology, Universidad Autónoma de Madrid, Madrid, Spain.
Viruses may be regarded as dynamic nucleoprotein assemblies capable of assisted multiplication within cells, and of propagation between cells and organisms. Infectious virus particles (virions) assembled in a host cell are dynamic, generally metastable particles: They are robust enough to protect the viral genome outside the cell but are also poised to undergo structural changes and execute mechanochemical actions required for infection of other cells. This chapter provides a broad introduction to the structural and physical biology of viruses and is intended mainly for virology students.
View Article and Find Full Text PDFBiochemistry
December 2024
Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, Irvine, California 92697, United States.
Arrestins halt signal transduction by binding to the phosphorylated C-termini of activated G protein-coupled receptors. Arrestin-1, the first subtype discovered, binds to rhodopsin in rod cells. Mutations in , the gene encoding Arrestin-1, are linked to Oguchi disease, characterized by delayed dark adaptation.
View Article and Find Full Text PDFSci Adv
December 2024
Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea.
Phosphatidylserine synthase (PssA) is essential in the biosynthesis of phosphatidylethanolamine, a major phospholipid of bacterial membranes. A peripheral membrane protein PssA can associate with the cellular membrane in its active state or exist in the cytosol in an inactive form. The membrane-bound enzyme acts on cytidine diphosphate diacylglycerol (CDP-DG) to form cytidine monophosphate and a covalent intermediate, which is subsequently targeted by serine to produce phosphatidylserine.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India.
Changes in water-protein interactions are crucial for proteins to achieve functional and nonfunctional conformations during structural transitions by modulating local stability. Amyloid-like protein aggregates in deteriorating neurons are hallmarks of neurodegenerative disorders. These aggregates form through significant structural changes, transitioning from functional native conformations to supramolecular cross-β-sheet structures via misfolded and oligomeric intermediates in a multistep process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!