AMP-activated protein kinase (AMPK), an energy-sensing enzyme that is activated in response to cellular stress, is a critical signaling molecule for the regulation of multiple metabolic processes. AMPK has recently emerged as an attractive novel target for the treatment of obesity and type 2 diabetes because its activation increases fatty acid oxidation and improves glucose homeostasis. Here we show that pharmacological activation of AMPK by insulin-sensitizing drugs markedly inhibits inducible nitric-oxide synthase (iNOS), a proinflammatory mediator in endotoxic shock and in chronic inflammatory states including obesity-linked diabetes. AMPK-mediated iNOS inhibition was observed in several cell types (myocytes, adipocytes, macrophages) and primarily resulted from post-transcriptional regulation of the iNOS protein. AMPK activation in vivo also blunted iNOS induction in muscle and adipose tissues of endotoxin-challenged rats. Reduction of AMPK expression by small interfering RNA reversed the inhibitory effects of AMPK activators on iNOS expression and nitric oxide production in myocytes. These results indicate that AMPK is a novel anti-inflammatory signaling pathway and thus represents a promising therapeutic target for immune-inflammatory disorders.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M401390200 | DOI Listing |
Receptors for the vasoactive adipokine apelin, termed APJ receptors, are G-protein-coupled receptors and are widely expressed throughout the cardiovascular system. APJ receptors can also signal via G-protein-independent pathways, including G-protein-coupled-receptor kinase 2 (GRK2), which inhibits nitric oxide synthase (eNOS) activity and nitric oxide (NO) production in endothelial cells. Apelin causes endothelium-dependent, NO-mediated relaxation of coronary arteries from normotensive animals, but the effects of activating APJ receptor signaling pathways in hypertensive coronary arteries are largely unknown.
View Article and Find Full Text PDFFront Nutr
January 2025
College of Tobacco Science and Engineering, Zhengzhou University of Light Industry, Zhengzhou, China.
In this study, Chinese yam polysaccharides (CYPs) were fermented using M616, and changes in the chemical composition, structure, and anti-inflammatory activity of CYPs before and after fermentation were investigated. The carbohydrate content of M616-fermented CYP (CYP-LP) increased from 71.03% ± 2.
View Article and Find Full Text PDFHypertens Res
January 2025
Department of Pathological and Molecular Pharmacology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, Japan.
Poor blood pressure control in treated patients with hypertension is an important topic in the field of hypertension, and an unmet need for new therapeutic drugs remains. Soluble guanylate cyclase (sGC), a key signal transduction enzyme responsible for vasodilation, has attracted increasing interest as a therapeutic target in various cardiovascular diseases. Two different sGC agonists, sGC stimulators and activators, can increase its enzymatic activity in reduced and oxidized/apo forms, respectively.
View Article and Find Full Text PDFJ Ethnopharmacol
January 2025
School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510000, China. Electronic address:
Ethnopharmacological Relevancy: Danggui Niantong Decoction (DGNTD) is a traditional Chinese medicine compound formula that has been demonstrated to possess efficacy in the treatment of rheumatoid arthritis (RA) and osteoarthritis (OA), as well as for dispelling moisture and relieving pain. As mentioned before, DGNTD is essential for synovial inflammation in RA. The primary features of the OA synovial membrane are low-grade inflammation, hyperplasia with enhanced fibroblast-like synoviocytes (FLS) proliferation, and fibrosis, which can cause pain and stiffness.
View Article and Find Full Text PDFMar Biotechnol (NY)
January 2025
College of Animal Science and Technology, Northwest A&F University, 22 Xinong Road, Yangling, Xianyang, 712100, Shaanxi, China.
Fucoidan from Apostichopus japonicus (Aj-FUC) has shown anti-inflammatory activity, whereas its mechanism was not explicated. This study investigated the anti-inflammatory potential and mechanism of the fucoidan from green and purple A. japonicus (G-FUC and P-FUC) in lipopolysaccharide (LPS)-treated RAW264.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!