The hypogonadic rat is characterized by male sterility, reduced female fertility, and renal hypoplasia controlled by a single recessive allele (hgn) on chromosome 10. Plasma testosterone is low and levels of gonadotropins are high in adult male hgn/hgn rats, indicating that the cause of hypogonadism lies within the testis itself. We found that the postnatal growth of the seminiferous tubules was severely affected. Here we describe the details of postnatal testicular pathogenesis of the hgn/ hgn rats. In these rats, gonadal sex determination and initial differentiation of each type of testicular cell occur, but proliferation, differentiation, and maturation of these cells during postnatal testicular development is severely affected. Postnatal pathological changes include reduced proliferation and apoptotic cell death of Sertoli cells, abnormal mitosis and cell death of gonocytes, reduced deposition of extracellular matrix proteins into the basal lamina, lack of the formation of an outer basal lamina, formation of multiple layers of undifferentiated peritubular cells, and the delayed appearance and islet conformation of adult-type Leydig cells. Apoptotic cell death of Sertoli cells and disappearance of FSH receptor mRNA expression indicate that this mutant rat is a useful model for Sertoli cell dysfunction. The abnormalities listed above might be caused by defective interactions between Sertoli cells and other types of testicular cells. Because the results presented here strongly indicate that a normal allele for hgn encodes a factor playing a critical role in testicular development, the determination of the gene responsible for hgn and the analysis of early alterations of gene expression caused by mutations in this gene would provide important information on the mechanisms of testicular development.

Download full-text PDF

Source
http://dx.doi.org/10.1095/biolreprod.103.024604DOI Listing

Publication Analysis

Top Keywords

testicular development
12
cell death
12
sertoli cells
12
seminiferous tubules
8
allele hgn
8
postnatal testicular
8
apoptotic cell
8
death sertoli
8
basal lamina
8
cells
7

Similar Publications

Chronic unpredictable stress exposure disrupts testicular function by modulating germ cell-junctional dynamics and Nrf2/HO-1/IKKβ/NF-κB pathway.

Reprod Toxicol

January 2025

Male Reproductive Physiology Lab., Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi-221005 (UP), India. Electronic address:

The unpredictable nature of stress complicates understanding its relationship with male infertility. In this study, we investigated testicular germ cell and junctional dynamics in male mice following exposure to chronic unpredictable stress (CUS). Adult Parkes male mice were exposed to CUS for 35 days (one complete spermatogenic cycle), with a random stressor (restraint stress, water deprivation, food deprivation, light flashing, wet bedding, cage shaking, or cage tilting) applied once per day in an intermittent and unpredictable manner to avoid repeating the same stimulus on consecutive days.

View Article and Find Full Text PDF

Gonadal miRNomes and transcriptomes in infected fish reveal sexually dimorphic patterns of the immune response.

Funct Integr Genomics

January 2025

Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (ICM-CSIC), Barcelona, 08003, Spain.

Fish disease outbreaks caused by bacterial burdens are responsible for decreasing productivity in aquaculture. Unraveling the molecular mechanisms activated in the gonads after infections is pivotal for enhancing husbandry techniques in fish farms, ensuring disease management, and selecting the most resilience phenotype. The present study, with an important commercial species the European sea bass (Dicentrarchus labrax), an important commercial species in Europe, examined changes in the miRNome and transcriptome 48 h after an intraperitoneal infection with Vibrio anguillarum.

View Article and Find Full Text PDF

Background: Sodium-glucose co-transporter two inhibitors (SGLT2is) are widely used in clinical practice due to their proven cardiovascular and renal benefits. However, various adverse drug reactions (ADRs) have been reported. This study aims to systematically update the ADRs associated with SGLT2is and identify the differences among various SGLT2is acovigilance of various SGLT-2 inhibitors.

View Article and Find Full Text PDF

Research progress on Sertoli cell secretion during spermatogenesis.

Front Endocrinol (Lausanne)

January 2025

Sichuan Provincial Key Laboratory of Traditional Chinese Medicine Regulation of Metabolic Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.

Sertoli cells (SCs), as the somatic cells in the testis of male mammals, play a crucial role in the close association with germ cells. The blood-testicular barrier (BTB), established by their tight junctions, provides immune protection to germ cells, leading to their characterization as "sentinel" cells. Moreover, the physiological process of testicular development and spermatogenesis in male animals is intricately tied to the secretory activities of SCs.

View Article and Find Full Text PDF

Objective: Impaired fetal and infant growth may cause alterations in developmental programming of the hypothalamic-pituitary-gonadal axis and subsequently pubertal development. We aimed to assess associations between fetal and infant growth and pubertal development.

Design: Population-based prospective birth cohort.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!