Distinct roles for protease-activated receptors 1 and 2 in vasomotor modulation in rat superior mesenteric artery.

Cardiovasc Res

Division of Physiology and Pathophysiology, School of Pharmaceutical Sciences, Kinki University, 3-4-1 Kowake, Higashi-Osaka 577-8502, Japan.

Published: March 2004

Objective: Protease-activated receptors (PARs) 1 and 2 are expressed in various blood vessels including rat aorta, modulating vascular tone. We investigated the roles of PAR-1 and PAR-2 in vasomotor modulation in rat superior mesenteric artery.

Methods And Results: Effects of the PAR-2-activating peptide Ser-Leu-Ile-Gly-Arg-Leu-amide (SLIGRL-amide) and the PAR-1-activating peptide Thr-Phe-Leu-Leu-Arg-amide (TFLLR-amide) on isometric tension were examined in isolated rat superior mesenteric artery or aorta. Both SLIGRL-amide and TFLLR-amide caused relaxation in the precontracted rat aortic rings. The latter peptide, but not the former, produced contraction in the resting rings. NG-nitro-L-arginine methyl ester (L-NAME), but not apamin/charybdotoxin known to block the endothelium-derived hyperpolarizing factor (EDHF) pathway, abolished the relaxation and facilitated the contraction. In the precontracted rat superior mesenteric artery, SLIGRL-amide, but not TFLLR-amide, elicited endothelium-dependent relaxation, which was only partially inhibited by L-NAME with and without indomethacin. The residual relaxation was abolished by apamin/charybdotoxin. Carbenoxolone, a gap junction inhibitor, significantly attenuated the SLIGRL-amide-evoked, EDHF-dependent relaxation, although neither 17-octadecynoic acid, a P450 epoxygenase inhibitor, nor catalase, a hydrogen peroxide scavenger, revealed inhibitory effects. The residual response resistant to carbenoxolone was unaffected by ouabain/BaCl2. In the resting artery, TFLLR-amide, but not SLIGRL-amide, produced only slight contraction, which was dramatically facilitated by combination of L-NAME and apamin/charybdotoxin or by removal of the endothelium.

Conclusions: Our data suggest that, in rat superior mesenteric artery, endothelial PAR-2, upon activation, causes relaxation via both NO and EDHF pathways, and that activation of muscular PAR-1 exhibits potential contractile activity that is largely masked by NO and EDHFs pathways triggered by endothelial PAR-1. Gap junctions might be involved in the EDHF mechanisms in this artery.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cardiores.2003.11.030DOI Listing

Publication Analysis

Top Keywords

rat superior
20
superior mesenteric
20
mesenteric artery
16
protease-activated receptors
8
vasomotor modulation
8
modulation rat
8
sligrl-amide tfllr-amide
8
precontracted rat
8
l-name apamin/charybdotoxin
8
rat
7

Similar Publications

Restenosis remains a long-standing limitation to effectively maintain functional blood flow after percutaneous transluminal angioplasty (PTA). While the use of drug-coated balloons (DCBs) containing antiproliferative drugs has improved patient outcomes, limited tissue transfer and poor therapeutic targeting capabilities contribute to off-target cytotoxicity, precluding adequate endothelial repair. In this work, a DCB system was designed and tested to achieve defined arterial delivery of an antirestenosis therapeutic candidate, cadherin-2 (N-cadherin) mimetic peptides (NCad), shown to selectively inhibit smooth muscle cell migration and limit intimal thickening in early animal PTA models.

View Article and Find Full Text PDF

Novel Foamed Magnesium Phosphate Antimicrobial Bone Cement for Bone Augmentation.

J Biomed Mater Res B Appl Biomater

January 2025

Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People's Republic of China.

In dental implant surgery, infection is identified as the primary factor contributing to the failure of bone grafts. There is an urgent need to develop bone graft materials possessing antibacterial characteristics to facilitate bone regeneration. Magnesium phosphate bone cement (MPC) is highly desirable for bone regeneration due to its favorable biocompatibility, plasticity, and osteogenic capabilities.

View Article and Find Full Text PDF

Left superior cervical ganglia lymph node mimicry and its role in rat ventricular arrhythmias following myocardial infarction.

Acta Physiol (Oxf)

February 2025

Department of Cardiology, Cheeloo College of Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China.

Aim: Sympathetic overactivation may lead to severe ventricular arrhythmias (VAs) post-myocardial infarction (MI). The superior cervical ganglion (SCG) is an extracardiac sympathetic ganglion which regulates cardiac autonomic tone. We aimed to investigate the characteristics and functional significance of SCG on neuro-cardiac communication post-MI.

View Article and Find Full Text PDF

Osteochondral defects (OCD) pose a significant clinical challenge due to the limited self-repair capacity of cartilage, leading to pain, joint dysfunction, and progression to osteoarthritis. Cellular implantations of adult mesenchymal stem cells (MSCs) enhanced with treatment of factors, such as small molecule Kartogenin (KGN) to promote chondrogenic differentiation, are promising but these cells often encounter hypertrophy during differentiation, compromising long-term stability. Induced pluripotent stem cell-derived MSCs (iMSCs) offer greater proliferative and differentiation capacity than MSCs and may provide a superior source of cells for cartilage repair.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a progressive neurodegenerative disorder that is characterized by motor symptoms such as tremors, rigidity, and bradykinesia. Magnetic resonance imaging (MRI) offers a non-invasive means to study PD and its progression. This study utilized the unilateral 6-hydroxydopamine (6-OHDA) rat model of parkinsonism to assess whether white matter microstructural integrity measured using advanced free-water diffusion tensor imaging metrics (fw-DTI) and gray matter density using voxel-based morphometry (VBM) can serve as imaging biomarkers of pathological changes following nigrostriatal denervation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!